Sliced-Wasserstein Distances and Flows on Cartan-Hadamard Manifolds

Clément Bonet¹

Joint work with Nicolas Courty², Lucas Drumetz³, François Septier⁴, Laetitia Chapel⁵, Benoît Malézieux⁶, Alain Rakotomamonjy⁷, Thomas Moreau⁶, Matthieu Kowalski⁸

> ¹ENSAE, CREST ²Université Bretagne Sud, IRISA ³IMT Atlantique, Lab-STICC ⁴Université Bretagne Sud, LMBA ⁵Institut Agro Rennes-Angers, IRISA ⁶Université Paris-Saclay, Inria, CEA ⁷Université de Rouen, Criteo AI Lab ⁸Universite Paris-Saclay, CNRS, LISN

> > GdT OT 22/01/2024

Probability Distributions

• Data: $x_1, \ldots, x_n \in \mathbb{R}^d \longleftrightarrow$ probability distribution $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$

Probability Distributions

• Data: $x_1, \ldots, x_n \in \mathbb{R}^d \longleftrightarrow$ probability distribution $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$

• Goals:

- $\circ~$ Compare distributions using some discrepancy D
- $\circ~$ Learn distributions by minimizing D (e.g. for generative models)

Optimal Transport

Kantorovich Problem

Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$,

$$OT_c(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int c(x,y) \, \mathrm{d}\gamma(x,y),$$

 $\Pi(\mu,\nu) = \left\{ \gamma \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d), \; \forall A \in \mathcal{B}(\mathbb{R}^d), \; \gamma(A \times \mathbb{R}^d) = \mu(A), \; \gamma(\mathbb{R}^d \times A) = \nu(A) \right\}$

Optimal Transport

Wasserstein Distance

Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$,

$$W_2^2(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int \|x - y\|_2^2 \, \mathrm{d}\gamma(x,y)$$

Properties:

- W₂ distance
- Metrizes the weak convergence
- Riemannian structure
- Geodesics between μ, ν : $\forall t \in [0, 1], \ \mu_t = \left((1 t)\pi^1 + t\pi^2\right)_{\#} \gamma$ for $\gamma \in \Pi_o(\mu, \nu)$

Condition to have a deterministic coupling, *i.e.* $\gamma = (\mathrm{Id}, T)_{\#}\mu$ with $T_{\#}\mu = \nu$ where $\forall A \in \mathcal{B}(\mathbb{R}^d), T_{\#}\mu(A) = \mu(T^{-1}(A))$: **Brenier's theorem (Brenier, 1991)**

 $\mu \ll {\rm Leb} \implies {\rm Optimal\ coupling\ } \gamma^* \ {\rm unique\ and\ } \gamma^* = ({\rm Id}, \nabla \varphi)_{\#} \mu \ {\rm with\ } \varphi \ {\rm convex}$

/36

Solving the OT Problem

Let $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}^d$, $\alpha, \beta \in \Sigma_n$, $\mu = \sum_{i=1}^n \alpha_i \delta_{x_i}$, $\nu = \sum_{i=1}^n \beta_i \delta_{y_i}$,

$$W_2^2(\mu,\nu) = \min_{P \in \mathbb{R}_+^{n \times n}, \ P \mathbb{1}_n = \alpha, \ P^T \mathbb{1}_n = \beta} \ \langle C, P \rangle_F \quad \text{with} \quad C = \left(\|x_i - y_j\|_2^2 \right)_{i,j}$$

Computational Complexity (Pele and Werman, 2009)

Numerical computation: Linear program in $O(n^3 \log n)$

Solving the OT Problem

Let $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}^d$, $\alpha, \beta \in \Sigma_n$, $\mu = \sum_{i=1}^n \alpha_i \delta_{x_i}$, $\nu = \sum_{i=1}^n \beta_i \delta_{y_i}$,

$$W_2^2(\mu,\nu) = \min_{P \in \mathbb{R}^{n \times n}_+, \ P \mathbb{1}_n = \alpha, \ P^T \mathbb{1}_n = \beta} \ \langle C, P \rangle_F \quad \text{with} \quad C = \left(\|x_i - y_j\|_2^2 \right)_{i,j}$$

Computational Complexity (Pele and Werman, 2009)

Numerical computation: Linear program in $O(n^3 \log n)$

Sample Complexity (Boissard and Le Gouic, 2014)

For
$$\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$$
, $x_1, \ldots, x_n \sim \mu$, $y_1, \ldots, y_n \sim \nu$, $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\hat{\nu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$,

$$\mathbb{E}[|W_2(\hat{\mu}_n, \hat{\nu}_n) - W_2(\mu, \nu)|] = O(n^{-1/d})$$

Solving the OT Problem

Let $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}^d$, $\alpha, \beta \in \Sigma_n$, $\mu = \sum_{i=1}^n \alpha_i \delta_{x_i}$, $\nu = \sum_{i=1}^n \beta_i \delta_{y_i}$,

$$W_2^2(\mu,\nu) = \min_{P \in \mathbb{R}^{n \times n}_+, \ P \mathbb{1}_n = \alpha, \ P^T \mathbb{1}_n = \beta} \ \langle C, P \rangle_F \quad \text{with} \quad C = \left(\|x_i - y_j\|_2^2 \right)_{i,j}$$

Computational Complexity (Pele and Werman, 2009)

Numerical computation: Linear program in $O(n^3 \log n)$

Sample Complexity (Boissard and Le Gouic, 2014)

For
$$\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$$
, $x_1, \ldots, x_n \sim \mu$, $y_1, \ldots, y_n \sim \nu$, $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\hat{\nu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$,

$$\mathbb{E}[|W_2(\hat{\mu}_n, \hat{\nu}_n) - W_2(\mu, \nu)|] = O(n^{-1/d})$$

Proposed solutions:

- Entropic regularization + Sinkhorn (Cuturi, 2013)
- Minibatch estimator (Fatras et al., 2020)
- Sliced-Wasserstein (Rabin et al., 2011; Bonnotte, 2013)

1D OT Problem Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R})$,

• Cumulative distribution function:

$$\forall t \in \mathbb{R}, \ F_{\mu}(t) = \mu(] - \infty, t] = \int \mathbb{1}_{]-\infty, t]}(x) \ \mathrm{d}\mu(x)$$

Quantile function:

$$\forall u \in [0,1], \ F_{\mu}^{-1}(u) = \inf \left\{ x \in \mathbb{R}, \ F_{\mu}(x) \ge u \right\}$$

1D Wasserstein Distance

$$W_2^2(\mu,\nu) = \int_0^1 \left| F_{\mu}^{-1}(u) - F_{\nu}^{-1}(u) \right|^2 \, \mathrm{d}u = \left\| F_{\mu}^{-1} - F_{\nu}^{-1} \right\|_{L^2([0,1])}^2$$

Let $x_1 < \cdots < x_n, \ y_1 < \cdots < y_n, \ \mu = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \ \nu = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$

$$W_2^2(\mu,\nu) = \frac{1}{n} \sum_{i=1}^n (x_i - y_i)^2$$

 $\rightarrow O(n \log n)$

Sliced-Wasserstein Distance

Definition (Sliced-Wasserstein (Rabin et al., 2011))

Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$,

$$\mathrm{SW}_2^2(\mu,\nu) = \int_{S^{d-1}} W_2^2(P_{\#}^{\theta}\mu, P_{\#}^{\theta}\nu) \, \mathrm{d}\lambda(\theta),$$

where $P^{\theta}(x) = \langle x, \theta \rangle$, λ uniform measure on S^{d-1} .

Properties of the Sliced-Wasserstein Distance

Let $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}^d$, $\alpha, \beta \in \Sigma_n$, $\mu = \sum_{i=1}^n \alpha_i \delta_{x_i}$, $\nu = \sum_{i=1}^n \beta_i \delta_{y_i}$.

Approximation via Monte-Carlo:

$$\widehat{\mathrm{SW}}_{2,L}^2(\boldsymbol{\mu},\boldsymbol{\nu}) = \frac{1}{L}\sum_{\ell=1}^L W_2^2(P_{\#}^{\theta_\ell}\boldsymbol{\mu},P_{\#}^{\theta_\ell}\boldsymbol{\nu}),$$

 $\theta_1,\ldots,\theta_L\sim\lambda.$

Properties:

- Computational complexity: $O(Ln \log n + Lnd)$
- Sample complexity: independent of the dimension (Nadjahi et al., 2020)
- SW₂ distance (Bonnotte, 2013)
- Topologically equivalent to the Wasserstein distance (Nadjahi et al., 2019), *i.e.* $\lim_{n \to \infty} SW_2^2(\mu_n, \mu) = 0 \iff \lim_{n \to \infty} W_2^2(\mu_n, \mu) = 0.$
- Differentiable, Hilbertian

Table of Contents

Sliced-Wasserstein on Manifolds

Application to Different Hadamard Manifolds

Wasserstein Gradient Flows

Riemannian Manifolds in Machine Learning

Data often lie on manifolds or have an underlying structure which can be captured on manifolds.

Example

- Directional data, Earth data, cyclic data on the sphere S^{d-1}
- Hierarchical data (trees, graphs, words, images) on Hyperbolic spaces
- M/EEG data on the space of Symmetric Positive Definite Matrices (SPDs)

Source: ESA

Riemannian Manifolds

Definition

A Riemannian manifold (\mathcal{M},g) of dimension d is a space that behaves locally as a linear space diffeomorphic to \mathbb{R}^d .

Properties:

- To any $x \in \mathcal{M}$, associate a tangent space $T_x \mathcal{M}$ with a smooth inner product $\langle \cdot, \cdot \rangle_x : T_x \mathcal{M} \times T_x \mathcal{M} \to \mathbb{R}.$
- Geodesic between x and y: shortest path minimizing the length $\mathcal L$
- Geodesic distance: $d(x,y) = \inf_{\alpha} \mathcal{L}(\gamma)$
- Exponential map: $\forall x \in \mathcal{M}, \ \exp_x : T_x \mathcal{M} \to \mathcal{M}$

Cartan-Hadamard Manifolds

Particular case of Riemannian manifold: Cartan-Hadamard manifolds (\mathcal{M},g)

Definition: Non-positive curvature, complete and connected

Properties:

- Geodesically complete: Any geodesic $\gamma: [0,1] \to \mathcal{M}$ between $x \in \mathcal{M}$ and $y \in \mathcal{M}$ can be extended to \mathbb{R}
- For any $x \in \mathcal{M}$, $\exp_x : T_x \mathcal{M} \to \mathcal{M}$ diffeomorphism

Example

- Euclidean spaces
- Hyperbolic spaces (Nickel and Kiela, 2017, 2018; Khrulkov et al., 2020)
- SPDs endowed with specific metrics (Sabbagh et al., 2019, 2020; Pennec, 2020)
- Product of Cartan-Hadamard manifolds (Gu et al., 2019; Skopek et al., 2019)

Hyperbolic Space

Hyperbolic space: Riemannian manifold of constant negative curvature

Different isometric models:

• Lorentz model
$$\mathbb{L}^d = \{(x_0, \dots, x_d) \in \mathbb{R}^{d+1}, \langle x, x \rangle_{\mathbb{L}} = -1, x_0 > 0\},\$$

$$d_{\mathbb{L}}(x,y) = \operatorname{arccosh}\left(-\langle x,y\rangle_{\mathbb{L}}\right), \quad \langle x,y\rangle_{\mathbb{L}} = -x_0y_0 + \sum_{i=1}^d x_iy_i$$

• Poincaré ball $\mathbb{B}^d = \{x \in \mathbb{R}^d, \ \|x\|_2 < 1\}$,

$$d_{\mathbb{B}}(x,y) = \operatorname{arccosh}\left(1 + 2\frac{\|x-y\|_{2}^{2}}{(1-\|x\|_{2}^{2})(1-\|y\|_{2}^{2})}\right)$$

Optimal Transport on Riemannian Manifolds

Let (\mathcal{M},g) be a Riemannian manifold, d its geodesic distance.

Definition (Wasserstein distance) Let $\mu, \nu \in \mathcal{P}_2(\mathcal{M})$, then $W_2^2(\mu, \nu) = \inf_{\gamma \in \Pi(\mu, \nu)} \int d(x, y)^2 \, \mathrm{d}\gamma(x, y)$

In practice: same drawbacks of the Euclidean case.

SW on Cartan-Hadamard Manifolds

 $\ensuremath{\textbf{Goal}}\xspace$: defining SW discrepancy on Cartan-Hadamard manifolds taking care of geometry of the manifold

	SW	CHSW
Closed-form of W	Line	?
Projection	$P^{\theta}(x) = \langle x, \theta \rangle$?
Integration	S^{d-1}	?

Projecting on Geodesics

• Generalization of straight lines on manifolds: geodesics

$$\forall v \in T_o \mathcal{M}, \ \mathcal{G}_v = \{ \exp_o(tv), \ t \in \mathbb{R} \}$$

- Geodesics isometric to $\mathbb R$
- Integrate along all possible directions on $S_o = \{v \in T_o \mathcal{M}, \|v\|_o = 1\}$

/ 36

Projections

- 1. Geodesic projections:
 - On Euclidean space: For $\theta \in S^{d-1}$, $\mathcal{G}_{\theta} = \{t\theta, t \in \mathbb{R}\}$,

$$\forall x \in \mathbb{R}^d, \ P^{\theta}(x) = \langle x, \theta \rangle = \operatorname*{argmin}_{t \in \mathbb{R}} \ \|x - t\theta\|_2$$

• On Cartan-Hadamard manifold: For $v \in T_o \mathcal{M}$, $\mathcal{G}_v = \{ \exp_o(tv), t \in \mathbb{R} \}$,

$$\forall x \in \mathcal{M}, \ P^{v}(x) = \underset{t \in \mathbb{R}}{\operatorname{argmin}} \ d(x, \exp_{o}(tv))$$

Projections

- 1. Geodesic projections:
 - On Euclidean space: For $\theta \in S^{d-1}$, $\mathcal{G}_{\theta} = \{t\theta, t \in \mathbb{R}\}$, $\exp_0(t\theta) = 0 + t\theta = t\theta$,

$$\forall x \in \mathbb{R}^d, \ P^{\theta}(x) = \langle x, \theta \rangle = \operatorname*{argmin}_{t \in \mathbb{R}} \ \|x - t\theta\|_2 = \operatorname*{argmin}_{t \in \mathbb{R}} \ d\big(x, \exp_0(t\theta)\big)$$

• On Cartan-Hadamard manifold: For $v \in T_o \mathcal{M}$, $\mathcal{G}_v = \{ \exp_o(tv), t \in \mathbb{R} \}$,

$$\forall x \in \mathcal{M}, \ P^{v}(x) = \underset{t \in \mathbb{R}}{\operatorname{argmin}} \ d(x, \exp_{o}(tv))$$

Projections

- 1. Geodesic projections: $\forall x \in \mathcal{M}, P^v(x) = \underset{t \in \mathbb{R}}{\operatorname{argmin}} d(x, \exp_o(tv))$
- 2. Horospherical projections: following level sets of the Busemann function

$$B^{\gamma}(x) = \lim_{t \to \infty} d(x, \gamma(t)) - t$$

- On Euclidean space: $B^{\theta}(x) = -\langle x, \theta \rangle$
- On Cartan-Hadamard manifold: $B^v(x) = \lim_{t \to \infty} d(x, \exp_o(tv)) t$

Cartan-Hadamard Sliced-Wassertein

Let (\mathcal{M}, g) a Hadamard manifold with o its origin. Denote λ the uniform distribution on $S_o = \{v \in T_o \mathcal{M}, \|v\|_o = 1\}.$

Geodesic-Cartan Hadamard Sliced-Wasserstein

$$\forall \mu, \nu \in \mathcal{P}_2(\mathcal{M}), \text{ GCHSW}_2^2(\mu, \nu) = \int_{S_o} W_2^2(P_{\#}^v \mu, P_{\#}^v \nu) \, \mathrm{d}\lambda(v)$$

Horospherical-Cartan Hadamard Sliced-Wasserstein

$$\forall \mu, \nu \in \mathcal{P}_2(\mathcal{M}), \text{ HCHSW}_2^2(\mu, \nu) = \int_{S_o} W_2^2(B_{\#}^v \mu, B_{\#}^v \nu) \, \mathrm{d}\lambda(v)$$

 $\mathrm{CHSW}=\mathrm{GCHSW}$ or HCHSW

General Properties

Some properties:

- Pseudo distance on $\mathcal{P}_2(\mathcal{M}) \rightarrow$ open question: distance?
- $\forall \mu, \nu \in \mathcal{P}_2(\mathcal{M}), \ \mathrm{CHSW}_2^2(\mu, \nu) \le W_2^2(\mu, \nu)$
- Sample complexity independent of the dimension
- Computational complexity: $L \cdot O(\operatorname{sort}(n)) + Ln \cdot O(\operatorname{projection}(d))$
- CHSW₂ is Hilbertian

Proposition

Define $K : \mathcal{P}_2(\mathcal{M}) \times \mathcal{P}_2(\mathcal{M}) \to \mathbb{R}$ as $K(\mu, \nu) = \exp\left(-\gamma \mathrm{CHSW}_2^2(\mu, \nu)\right)$ for $\gamma > 0$. Then K is a positive definite kernel.

Proposition

Let
$$\mu, \nu \in \mathcal{P}_2(\mathbb{B}^d)$$
 and denote $\tilde{\mu} = (P_{\mathbb{B} \to \mathbb{L}})_{\#}\mu$, $\tilde{\nu} = (P_{\mathbb{B} \to \mathbb{L}})_{\#}\nu$. Then,

$$\begin{split} \mathrm{HHSW}_2^2(\mu,\nu) &= \mathrm{HHSW}_2^2(\tilde{\mu},\tilde{\nu}),\\ \mathrm{GHSW}_2^2(\mu,\nu) &= \mathrm{GHSW}_2^2(\tilde{\mu},\tilde{\nu}). \end{split}$$

Runtime and Complexity (Bonet et al., 2023c)

Closed-forms for P^v and B^v on \mathbb{B}^d and \mathbb{L}^d :

$$\begin{aligned} \forall v \in T_{x^0} \mathbb{L}^d \cap S^d, \ x \in \mathbb{L}^d, \\ P^v(x) &= \operatorname{arctanh} \left(-\frac{\langle x, v \rangle_{\mathbb{L}}}{\langle x, x^0 \rangle_{\mathbb{L}}} \right) \\ B^v(x) &= \log \left(-\langle x, x^0 + v \rangle_{\mathbb{L}} \right) \end{aligned}$$

$$\begin{aligned} &\forall \tilde{v} \in S^{d-1}, \ y \in \mathbb{B}^d, \\ &P^{\tilde{v}}(y) = 2 \operatorname{arctanh}\left(s(y)\right) \\ &B^{\tilde{v}}(y) = \log\left(\frac{\|\tilde{v} - y\|_2^2}{1 - \|y\|_2^2}\right) \end{aligned}$$

 $GHSW_{2}, L = 200$

Method	Complexity	
Wasserstein + LP Sinkhorn SW GHSW HHSW	$\begin{array}{c}O(n^3\log n+n^2d)\\O(n^2d)\\O\left(Ln(d+\log n)\right)\\O\left(Ln(d+\log n)\right)\\O\left(Ln(d+\log n)\right)\end{array}$	$\begin{array}{c} 10^{1} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Number of samples in each distribution

Wasserstein

8/36

Comparison of the Projections

• Property of the Horospherical projection: conserves the distance between points on a parallel geodesic (Chami et al., 2021)

Horospherical projection

Geodesic projection

Comparison of the Projections

• Property of the Horospherical projection: conserves the distance between points on a parallel geodesic (Chami et al., 2021)

Horospherical projection

Geodesic projection

• Let $\mu = WND(0, I_d)$, $\nu_t = WND(x_t, I_d)$,

Table of Contents

Sliced-Wasserstein on Manifolds

Application to Different Hadamard Manifolds

Wasserstein Gradient Flows

Pullback Euclidean Manifold

Let $(\mathcal{N},\langle\cdot,\cdot\rangle)$ an Euclidean space, $\phi:\mathcal{M}\to\mathcal{N}$ a diffeomorphism.

- (\mathcal{M}, g^{ϕ}) Riemannian manifold with $g_x^{\phi}(u, v) = \langle \phi_{*,x}(u), \phi_{*,x}(v) \rangle$ for $x \in \mathcal{M}$, $u, v \in T_x \mathcal{M}$
- Geodesic distance: $d_{\mathcal{M}}(x,y) = \|\phi(x) \phi(y)\|$
- Geodesic through o ∈ M with direction v ∈ T_oM:

$$\forall t \in \mathbb{R}, \ \gamma_v(t) = \phi^{-1} \big(\phi(o) + t \phi_{*,o}(v) \big)$$

Proposition

Let $v \in S_o = \{v \in T_o\mathcal{M}, \|v\|_o = \|\phi_{*,o}(v)\| = 1\}$, then the projection coordinate on $\mathcal{G}_v = \{\gamma_v(t), t \in \mathbb{R}\}$ is

$$\forall x \in \mathcal{M}, \ P^{v}(x) = -B^{v}(x) = \langle \phi(x) - \phi(o), \phi_{*,o}(v) \rangle.$$

Pullback SW

Let (\mathcal{M},g^{ϕ}) a Pullback Euclidean Manifold.

Proposition

Let $\mu, \nu \in \mathcal{P}_2(\mathcal{M})$. Then,

CHSW₂²(
$$\mu, \nu$$
) = $\int_{S_{\phi(o)}} W_2^2(Q_{\#}^v \phi_{\#} \mu, Q_{\#}^v \phi_{\#} \nu) d((\phi_{*,o})_{\#} \lambda)(v)$
= SW₂²($\phi_{\#} \mu, \phi_{\#} \nu$)

with $Q^v(x) = \langle x, v \rangle$ and SW_2 the Euclidean Sliced-Wasserstein distance.

Additional Properties:

- CHSW₂ is a finite distance on $\mathcal{P}_2(\mathcal{M})$
- CHSW₂ metrizes the weak convergence
- For $\mu, \nu \in \mathcal{P}(B(o, r))$,

 $\operatorname{CHSW}_{2}^{2}(\mu,\nu) \leq W_{2}^{2}(\mu,\nu) \leq C_{d,r} \operatorname{CHSW}_{2}(\mu,\nu)^{\frac{1}{d+1}}$

Examples

Example

- Mahalanobis distance: $\langle u, v \rangle_x = u^T A v$ for $A \in S_d^{++}(\mathbb{R})$
- Squared geodesic distance where $\langle u,v\rangle_x = u^T A(x)v$ for $A(x) \in S_d^{++}(\mathbb{R})$
- SPD with (O(n)-Invariant) Log-Euclidean metric, Log-Cholesky metric

Mahalanobis distance: Let $A \in S_d^{++}(\mathbb{R})$,

$$\forall x, y \in \mathbb{R}^d, \ d(x, y)^2 = (x - y)^T A(x - y) = \|A^{\frac{1}{2}}x - A^{\frac{1}{2}}y\|_2^2$$

•
$$\phi(x) = A^{\frac{1}{2}}x$$
, $\phi_{*,0}(v) = A^{\frac{1}{2}}v$

• For $v \in S_0 = \{v \in \mathbb{R}^d, \ \|v\|_0^2 = v^T A v = 1\}, \ P^v(x) = \langle A^{\frac{1}{2}}x, A^{\frac{1}{2}}v \rangle = x^T A v$

$$\mathrm{SW}_{2,A}^2(\mu,\nu) = \int_{S_0} W_2^2(P_{\#}^v\mu,P_{\#}^v\nu) \ \mathrm{d}\lambda(v)$$

²²/₃₆

Document Classification (Kusner et al., 2015)

Goal: Classify documents

- Words $x_1, \ldots, x_n \in \mathbb{R}^d$
- Document $D_k = \sum_{i=1}^n w_i^k \delta_{x_i}$ with $\sum_{i=1}^n w_i^k = 1$
- Learn A (Huang et al., 2016)
- Compute $(d_A(D_k, D_\ell))_{k,\ell}$
- Use a k-nearest neighbor classifier

Accuracy

	BBCSport	Movies	Goodreads genre	Goodreads like
W_2	94.55	74.44	56.18	71.00
W_A	98.36	76.04	56.81	68.37
SW_2	$89.42_{\pm 0.89}$	$67.27_{\pm 0.69}$	$50.01_{\pm 1.21}$	$65.90_{\pm 0.17}$
$\mathrm{SW}_{2,A}$	$97.58_{\pm 0.04}$	$76.55_{\pm 0.11}$	$57.03_{\pm 0.68}$	$67.54_{\pm 0.14}$

Manifold of SPD Matrices with Affine-Invariant Metric

Symmetric Positive Definite (SPD) Matrices:

$$S_d^{++}(\mathbb{R}) = \left\{ M \in S_d(\mathbb{R}), \ \forall x \in \mathbb{R}^d \setminus \{0\}, \ x^T M x > 0 \right\}$$

- Affine-Invariant distance: $\forall X, Y \in S_d^{++}(\mathbb{R}), d_{AI}(X,Y) = \sqrt{\mathrm{Tr}(\log(X^{-1}Y)^2)}$
- Tangent space: $T_{I_d}S_d^{++}(\mathbb{R})\cong S_d(\mathbb{R})$
- Geodesics through I_d : $\mathcal{G}_A = \{ \exp(tA), t \in \mathbb{R} \}$ for $A \in S_d(\mathbb{R})$

Manifold of SPD Matrices with Affine-Invariant Metric

Symmetric Positive Definite (SPD) Matrices:

$$S_d^{++}(\mathbb{R}) = \left\{ M \in S_d(\mathbb{R}), \ \forall x \in \mathbb{R}^d \setminus \{0\}, \ x^T M x > 0 \right\}$$

- Affine-Invariant distance: $\forall X, Y \in S_d^{++}(\mathbb{R}), d_{AI}(X,Y) = \sqrt{\mathrm{Tr}(\log(X^{-1}Y)^2)}$
- Tangent space: $T_{I_d}S_d^{++}(\mathbb{R})\cong S_d(\mathbb{R})$
- Geodesics through I_d : $\mathcal{G}_A = \{ \exp(tA), t \in \mathbb{R} \}$ for $A \in S_d(\mathbb{R})$

Projections:

- Closed-form for the geodesic projection?
- Busemann function:

$$\forall M \in S_d^{++}(\mathbb{R}), \ B^A(M) = -\langle A, \log(\pi_A(M)) \rangle_F,$$

with π_A projection on the space of matrices commuting with A. \rightarrow Very costly in practice

Manifold of SPD Matrices with Log-Euclidean Metric Symmetric Positive Definite (SPD) Matrices:

$$S_d^{++}(\mathbb{R}) = \left\{ M \in S_d(\mathbb{R}), \ \forall x \in \mathbb{R}^d \setminus \{0\}, \ x^T M x > 0 \right\}$$

- Log-Euclidean distance: $\forall X, Y \in S_d^{++}(\mathbb{R}), \ d_{LE}(X,Y) = \|\log X \log Y\|_F$
- Tangent space: $T_{I_d}S_d^{++}(\mathbb{R})\cong S_d(\mathbb{R})$
- Projection on geodesics $\mathcal{G}_A = \{\exp(tA), t \in \mathbb{R}\}$ for $A \in S_{I_d}$:

$$\forall M \in S_d^{++}(\mathbb{R}), \ P^A(M) = -B^A(M) = \langle A, \log M \rangle_F$$

$\ensuremath{\mathsf{M}}\xspace/\ensuremath{\mathsf{EEG}}\xspace$ data

M/EEG data:

- Recorded from the brain
- Multivariate time series $X \in \mathbb{R}^{N \times T}$
- Transform X into SPDs
 - \rightarrow Brain-Age prediction

Data \boldsymbol{X} with \boldsymbol{T} time samples

²⁶/₃₆

$\ensuremath{\mathsf{M}}\xspace/\ensuremath{\mathsf{EEG}}\xspace$ data

M/EEG data:

- Recorded from the brain
- Multivariate time series $X \in \mathbb{R}^{N \times T}$
- Transform X into distribution of SPDs
- \rightarrow Brain-Age prediction

Distribution of SPD matrices

Data \boldsymbol{X} with \boldsymbol{T} time samples

²⁶/₃₆

Brain-Age Prediction

Positive definite Gaussian Kernel with SPDSW

$$K(\mu,\nu) = e^{-\gamma \operatorname{SPDSW}_2^2(\mu,\nu)} = e^{-\gamma \|\Phi(\mu) - \Phi(\nu)\|_{\mathcal{H}}^2}$$

Known feature map Φ , no need for expensive quadratic computations

 \rightarrow Kernel Ridge regression

SPD Matrices with Other Metrics

Other Pullback-Euclidean metrics over SPDs:

• O(n)-Invariant Log-Euclidean metric (Thanwerdas and Pennec, 2023): • $\forall X \in S_d^{++}(\mathbb{R}), \ \phi^{p,q}(X) = F^{p,q}(\log(X))$ with, for $A \in S_d(\mathbb{R})$,

$$F^{p,q}(A) = qA + \frac{p-q}{d} \operatorname{Tr}(A) I_d$$

 $\circ \ \forall X \in S_d^{++}(\mathbb{R}), \ P^A(X) = \langle F^{p,q}(\log(X)), F^{p,q}(A) \rangle_F.$

- Log-Cholesky metric (Lin, 2019): • $\forall X = LL^T \in S_d^{++}(\mathbb{R}), \ \phi(X) = \lfloor L \rfloor + \log(\operatorname{diag}(L))$ • $\forall X = LL^T \in S_d^{++}(\mathbb{R}), \ P^A(X) = \langle \lfloor L \rfloor, \lfloor A \rfloor \rangle + \langle \log(\operatorname{diag}(L)), \frac{1}{2}\operatorname{diag}(A) \rangle_F.$
- Adaptative Log-Euclidean metric (Chen et al., 2023): • $\forall X \in S_d^{++}(\mathbb{R}), \ \phi(X) = \log_{\alpha}(X) \text{ with } \alpha = (a_1, \dots, a_d) \in \mathbb{R}_+^d \setminus \{(1, \dots, 1)\}$

Product of Manifolds Let $((\mathcal{M}_i, g_i))_{i=1}^n n$ Hadamard manifolds.

Product Manifold:

- $\mathcal{M} = \mathcal{M}_1 \times \cdots \times \mathcal{M}_n$
- For $x = (x_1, \ldots, x_n) \in \mathcal{M}$, $g(x) = \sum_{i=1}^n g_i(x_i)$
- $T_x \mathcal{M} = T_{x_1} \mathcal{M}_1 \times \cdots \times T_{x_n} \mathcal{M}$
- Geodesic distance: $\forall x, y \in \mathcal{M}, \ d(x, y)^2 = \sum_{i=1}^n d(x_i, y_i)^2$
- Geodesic passing through $o = (o_1, \ldots, o_n)$ in direction $v = (v_1, \ldots, v_n) \in T_o \mathcal{M}$:

$$\forall t \in \mathbb{R}, \ \gamma_o(t) = \left(\exp_{o_1}(tv_1), \dots, \exp_{o_n}(tv_n)\right)$$

Projections:

- Closed-form for the geodesic projection?
- Busemann function: For $(\lambda_i)_{i=1}^n$ such that $\sum_{i=1}^n \lambda_i^2 = 1$ and $\gamma: t \mapsto (\gamma_1(\lambda_1 t), \dots \gamma_n(\lambda_n t))$,

$$B^{\gamma}(x) = \sum_{i=1}^{n} \lambda_i B^{\gamma_i}(x_i).$$

Table of Contents

Sliced-Wasserstein on Manifolds

Application to Different Hadamard Manifolds

Wasserstein Gradient Flows

Gradient Flows

 $\textbf{Goal:} \min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \ \mathcal{F}(\mu) \text{ for } \mathcal{F} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}.$

Example

- $\mathcal{F}(\mu) = \mathrm{KL}(\mu || \nu)$ for sampling from $\nu \propto e^{-V(x)}$
- $\mathcal{F}(\mu) = D(\mu, \nu)$ for sampling from ν

Definition (Gradient Flow)

A gradient flow is a curve $\rho: [0,T] \to \mathcal{P}_2(\mathbb{R}^d)$ which decreases as much as possible along the functional \mathcal{F} .

Gradient Flows

Goal: $\min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \mathcal{F}(\mu)$ for $\mathcal{F} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$.

Example

- $\mathcal{F}(\mu) = \mathrm{KL}(\mu || \nu)$ for sampling from $\nu \propto e^{-V(x)}$
- $\mathcal{F}(\mu) = D(\mu, \nu)$ for sampling from ν

Definition (Gradient Flow)

A gradient flow is a curve $\rho: [0,T] \to \mathcal{P}_2(\mathbb{R}^d)$ which decreases as much as possible along the functional \mathcal{F} .

For $F : \mathbb{R}^d \to \mathbb{R}$ differentiable:

• Need to solve

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t}(t) = -\nabla F(x(t)) \\ x(0) = x_0 \end{cases}$$

- Or approximate it by a time discretization
- Gradient descent/Proximal point algorithm

From (Bach, 2020)

Wasserstein Gradient Flows

 $\textbf{Goal:} \min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \ \mathcal{F}(\mu) \text{ for } \mathcal{F}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}.$

Wasserstein Gradient Flows

Wasserstein gradient flows of \mathcal{F} : curve $t \mapsto \rho_t$ satisfying (weakly)

$$\partial_t \rho_t - \operatorname{div} \left(\rho_t \nabla_{W_2} \mathcal{F}(\rho_t) \right) = 0,$$

where for all $\xi \in L^2(\mu)$,

$$\mathcal{F}((\mathrm{Id} + \epsilon\xi)_{\#}\mu) = \mathcal{F}(\mu) + \epsilon \int \langle \nabla_{W_2} \mathcal{F}(\mu)(x), \xi(x) \rangle \, \mathrm{d}\mu(x) + o(\epsilon).$$

• Approximated with the forward Euler scheme as:

$$\forall k \ge 0, \ \mu_{k+1} = \left(\mathrm{Id} - \tau \nabla_{W_2} \mathcal{F}(\mu_k) \right)_{\#} \mu_k = \exp_{\mathrm{Id}} \left(- \tau \nabla_{W_2} \mathcal{F}(\mu_k) \right)_{\#} \mu_k$$

• Particle approximation: $\hat{\mu}_k^n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i^k}$

$$\forall k \ge 0, i \in \{1, \dots, n\}, \ x_i^{k+1} = \exp_{x_i^k} \left(-\tau \nabla_{W_2} \mathcal{F}(\hat{\mu}_k^n)(x_i^k) \right)$$

Wasserstein Gradient of CHSW Let $\mathcal{F}(\mu) = \frac{1}{2} CHSW_2^2(\mu, \nu)$ for $\mu, \nu \in \mathcal{P}_2(\mathcal{M})$.

Wasserstein gradient of \mathcal{F}

For all $x \in \mathcal{M}$,

$$\nabla_{W_2} \mathcal{F}(\mu)(x) = \int_{S_o} \psi'_v \big(P^v(x) \big) \operatorname{grad}_{\mathcal{M}} P^v(x) \, \mathrm{d}\lambda(v),$$

with ψ_v the Kantorovich potential between $P^v_{\#}\mu$ and $P^v_{\#}\nu$:

$$\forall s \in \mathbb{R}, \ \psi'_{v}(s) = s - F^{-1}_{P^{v}_{\#}\nu}(F_{P^{v}_{\#}\mu}(s)).$$

• Continuity equation:

$$\partial_t \mu_t + \operatorname{div}(\mu_t v_t) = 0 \quad \text{with} \quad v_t = -\int_{S_o} \psi'_v (P^v(x)) \operatorname{grad}_{\mathcal{M}} P^v(x) \, \mathrm{d}\lambda(v)$$

• Algorithm: For all $k \ge 0$, $i \in \{1, \dots, n\}$,

$$x_{i}^{k+1} = \exp_{x_{i}^{k}} \left(\tau \hat{v}_{k}(x_{i}^{k}) \right) \quad \text{with} \quad \hat{v}_{k}(x) = -\frac{1}{L} \sum_{\ell=1}^{L} \psi_{v_{\ell},k}' \left(P^{v_{\ell}}(x) \right) \operatorname{grad}_{\mathcal{M}} P^{v_{\ell}}(x).$$

Wasserstein Gradient of SW Let $\mathcal{F}(\mu) = \frac{1}{2}SW_2^2(\mu, \nu)$ for $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$.

Wasserstein gradient of \mathcal{F} (Bonnotte, 2013; Liutkus et al., 2019)

For $\theta \in S^{d-1}$, $P^{\theta}(x) = \langle x, \theta \rangle$, $\operatorname{grad} P^{\theta}(x) = \nabla P^{\theta}(x) = \theta$. For all $x \in \mathbb{R}^d$,

$$\nabla_{W_2} \mathcal{F}(\mu)(x) = \int_{S^{d-1}} \psi_{\theta}' (P^{\theta}(x)) \theta \, \mathrm{d}\lambda(\theta),$$

with ψ_{θ} the Kantorovich potential between $P_{\#}^{\theta}\mu$ and $P_{\#}^{\theta}\nu$:

$$\forall s \in \mathbb{R}, \ \psi'_{\theta}(s) = s - F_{P_{\#}^{\theta}\nu}^{-1} (F_{P_{\#}^{\theta}\mu}(s)).$$

• Continuity equation:

$$\partial_t \mu_t + \operatorname{div}(\mu_t v_t) = 0 \quad \text{with} \quad v_t = -\int_{S^{d-1}} \psi_{\theta}'(\langle \theta, x \rangle) \theta \, \mathrm{d}\lambda(\theta)$$

• Algorithm (SWF): For all $k \ge 0, \ i \in \{1, \dots, n\}$,

$$x_i^{k+1} = x_i^k - \frac{\tau}{L} \sum_{\ell=1}^{L} \psi_{\theta_\ell,k}'(\langle \theta_\ell, x_i^k \rangle) \theta_\ell$$

Application to Mahalanobis Space

On Mahalanobis manifold:

- $\exp_x(v) = x + v$
- $P^v(x) = x^T A v$
- $\operatorname{grad}_{\mathcal{M}} P^v(x) = v$

Algorithm: $\forall k \geq 0, \ i \in \{1, \dots, n\}$, $x_i^{k+1} = x_i^k - \frac{\tau}{L} \sum_{\ell=1}^L \psi'_{v_\ell, k}(v_\ell^T A x_i^k) v_\ell$

SWF in the space (\mathbb{R}^d, d_{A_t}) with A_t interpolating between I_2 and $A \in S_d^{++}(\mathbb{R})$

³⁴/36

Application to Hyperbolic Space

On Lorentz model:

- $\forall x \in \mathbb{L}^d, v \in T_x \mathbb{L}^d, \exp_x(v) = \cosh(t \|v\|_{\mathbb{L}})x + \sinh(t \|v\|_{\mathbb{L}})\frac{v}{\|v\|_{\mathbb{L}}}$
- $P^{v}(x) = \operatorname{arctanh}\left(-\frac{\langle x,v\rangle_{\mathbb{L}}}{\langle x,x^{0}\rangle_{\mathbb{L}}}\right)$, $\operatorname{grad}_{\mathbb{L}}P^{v}(x) = -\frac{\langle x,x^{0}\rangle_{\mathbb{L}}v \langle x,v\rangle_{\mathbb{L}}x^{0}}{\langle x,x^{0}\rangle_{\mathbb{L}}^{2} \langle x,v\rangle_{\mathbb{L}}^{2}}$
- $B^v(x) = \log \left(-\langle x, x^0 + v \rangle_{\mathbb{L}} \right)$, $\operatorname{grad}_{\mathbb{L}} B^v(x) = \frac{x^0 + v}{\langle x, x^0 + v \rangle_{\mathbb{L}}} + x$

 $\text{Algorithm: } \forall k \ge 0 \text{, } x_i^{k+1} = \exp_{x_i^k} \left(-\frac{\tau}{L} \sum_{\ell=1}^L \psi_{v_\ell,k}' \left(P^{v_\ell}(x_i^k) \right) \text{grad}_{\mathbb{L}} P^{v_\ell}(x_i^k) \right)$

Application to Hyperbolic Space On Lorentz model:

- $\forall x \in \mathbb{L}^d, v \in T_x \mathbb{L}^d, \exp_x(v) = \cosh(t \|v\|_{\mathbb{L}})x + \sinh(t \|v\|_{\mathbb{L}})\frac{v}{\|v\|_{\mathbb{L}}}$
- $P^{v}(x) = \operatorname{arctanh}\left(-\frac{\langle x,v\rangle_{\mathbb{L}}}{\langle x,x^{0}\rangle_{\mathbb{L}}}\right)$, $\operatorname{grad}_{\mathbb{L}}P^{v}(x) = -\frac{\langle x,x^{0}\rangle_{\mathbb{L}}v \langle x,v\rangle_{\mathbb{L}}x^{0}}{\langle x,x^{0}\rangle_{\mathbb{L}}^{2} \langle x,v\rangle_{\mathbb{L}}^{2}}$
- $B^{v}(x) = \log \left(-\langle x, x^{0} + v \rangle_{\mathbb{L}} \right)$, $\operatorname{grad}_{\mathbb{L}} B^{v}(x) = \frac{x^{0} + v}{\langle x, x^{0} + v \rangle_{\mathbb{L}}} + x$

 $\text{Algorithm: } \forall k \geq 0 \text{, } x_i^{k+1} = \exp_{x_i^k} \left(-\frac{\tau}{L} \sum_{\ell=1}^L \psi_{v_\ell,k}' \big(P^{v_\ell}(x_i^k) \big) \text{grad}_{\mathbb{L}} P^{v_\ell}(x_i^k) \right)$

Conclusion

Conclusion

- SW discrepancies on Cartan-Hadamard manifolds
- Can be applied to ML tasks on different manifolds
- Wasserstein gradient flows to minimize CHSW

Perspectives and follow-up works:

- Study other Riemannian manifolds: Sphere (Bonet et al., 2023b; Quellmalz et al., 2023)
- Extension to unbalanced setting (Séjourné et al., 2023)
- Study statistical properties
- Study convergence of the gradient flows

Conclusion

Conclusion

- SW discrepancies on Cartan-Hadamard manifolds
- Can be applied to ML tasks on different manifolds
- Wasserstein gradient flows to minimize CHSW

Perspectives and follow-up works:

- Study other Riemannian manifolds: Sphere (Bonet et al., 2023b; Quellmalz et al., 2023)
- Extension to unbalanced setting (Séjourné et al., 2023)
- Study statistical properties
- Study convergence of the gradient flows

Thank you!

References I

- David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. *Advances in Neural Information Processing Systems*, 33: 21428–21439, 2020.
- Francis Bach. Effortless optimization through gradient flows, 2020. URL https://francisbach.com/gradient-flows/.
- Emmanuel Boissard and Thibaut Le Gouic. On the mean speed of convergence of empirical and occupation measures in wasserstein distance. In *Annales de l'IHP Probabilités et statistiques*, volume 50, pages 539–563, 2014.
- Clément Bonet, Benoît Malézieux, Alain Rakotomamonjy, Lucas Drumetz, Thomas Moreau, Matthieu Kowalski, and Nicolas Courty. Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals. In *Proceedings of the* 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 2777–2805. PMLR, 23–29 Jul 2023a.
- Clément Bonet, Paul Berg, Nicolas Courty, François Septier, Lucas Drumetz, and Minh-Tan Pham. Spherical sliced-wasserstein. In *The Eleventh International Conference on Learning Representations*, 2023b.

References II

- Clément Bonet, Laetitia Chapel, Lucas Drumetz, and Nicolas Courty. Hyperbolic sliced-wasserstein via geodesic and horospherical projections. In *Proceedings of 2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML)*, pages 334–370. PMLR, 2023c.
- Nicolas Bonnotte. Unidimensional and evolution methods for optimal transportation. PhD thesis, Paris 11, 2013.
- Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. *Communications on pure and applied mathematics*, 44(4):375–417, 1991.
- Ines Chami, Albert Gu, Dat P Nguyen, and Christopher Ré. Horopca: Hyperbolic dimensionality reduction via horospherical projections. In *International Conference on Machine Learning*, pages 1419–1429. PMLR, 2021.
- Ziheng Chen, Tianyang Xu, Zhiwu Huang, Yue Song, Xiao-Jun Wu, and Nicu Sebe. Adaptive riemannian metrics on spd manifolds. *arXiv preprint arXiv:2303.15477*, 2023.
- Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural information processing systems*, 26, 2013.

References III

- Kilian Fatras, Younes Zine, Rémi Flamary, Remi Gribonval, and Nicolas Courty. Learning with minibatch wasserstein : asymptotic and gradient properties. In Silvia Chiappa and Roberto Calandra, editors, *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*, pages 2131–2141. PMLR, 26–28 Aug 2020.
- Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations in product spaces. In *International Conference on Learning Representations*, 2019.
- Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei Sha, and Kilian Q Weinberger. Supervised word mover's distance. *Advances in neural information processing systems*, 29, 2016.
- Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky. Hyperbolic image embeddings. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6418–6428, 2020.

References IV

- Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document distances. In *International conference on machine learning*, pages 957–966. PMLR, 2015.
- Zhenhua Lin. Riemannian geometry of symmetric positive definite matrices via cholesky decomposition. *SIAM Journal on Matrix Analysis and Applications*, 40 (4):1353–1370, 2019.
- Antoine Liutkus, Umut Simsekli, Szymon Majewski, Alain Durmus, and Fabian-Robert Stöter. Sliced-wasserstein flows: Nonparametric generative modeling via optimal transport and diffusions. In *International Conference on Machine Learning*, pages 4104–4113. PMLR, 2019.
- Kimia Nadjahi, Alain Durmus, Umut Simsekli, and Roland Badeau. Asymptotic guarantees for learning generative models with the sliced-wasserstein distance. *Advances in Neural Information Processing Systems*, 32, 2019.
- Kimia Nadjahi, Alain Durmus, Lénaïc Chizat, Soheil Kolouri, Shahin Shahrampour, and Umut Simsekli. Statistical and topological properties of sliced probability divergences. *Advances in Neural Information Processing Systems*, 33: 20802–20812, 2020.

References V

- Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. *Advances in neural information processing systems*, 30, 2017.
- Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of hyperbolic geometry. In *International conference on machine learning*, pages 3779–3788. PMLR, 2018.
- Ofir Pele and Michael Werman. Fast and robust earth mover's distances. In 2009 IEEE 12th international conference on computer vision, pages 460–467. IEEE, 2009.
- Xavier Pennec. Manifold-valued image processing with spd matrices. In *Riemannian geometric statistics in medical image analysis*, pages 75–134. Elsevier, 2020.
- Michael Quellmalz, Robert Beinert, and Gabriele Steidl. Sliced optimal transport on the sphere. *arXiv preprint arXiv:2304.09092*, 2023.
- Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application to texture mixing. In *International Conference on Scale Space and Variational Methods in Computer Vision*, pages 435–446. Springer, 2011.

⁵/36

References VI

- David Sabbagh, Pierre Ablin, Gaël Varoquaux, Alexandre Gramfort, and Denis A Engemann. Manifold-regression to predict from meg/eeg brain signals without source modeling. *Advances in Neural Information Processing Systems*, 32, 2019.
- David Sabbagh, Pierre Ablin, Gaël Varoquaux, Alexandre Gramfort, and Denis A Engemann. Predictive regression modeling with meg/eeg: from source power to signals and cognitive states. *NeuroImage*, 222:116893, 2020.
- Thibault Séjourné, Clément Bonet, Kilian Fatras, Kimia Nadjahi, and Nicolas Courty. Unbalanced optimal transport meets sliced-wasserstein. *arXiv preprint arXiv:2306.07176*, 2023.
- Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational autoencoders. *arXiv preprint arXiv:1911.08411*, 2019.
- Yann Thanwerdas and Xavier Pennec. O (n)-invariant riemannian metrics on spd matrices. *Linear Algebra and its Applications*, 661:163–201, 2023.
- Or Yair, Felix Dietrich, Ronen Talmon, and Ioannis G Kevrekidis. Domain adaptation with optimal transport on the manifold of spd matrices. *arXiv* preprint arXiv:1906.00616, 2019.

Domain Adaptation in BCI

Learning a map f_{θ} between a source μ and a target ν

$$\min_{\theta} \text{SPDSW}_2^2((f_{\theta})_{\#}\mu,\nu)$$

Minimizing over the particles

$$\min_{(x_i)_{i=1}^n} \operatorname{SPDSW}_2^2\left(\frac{1}{n}\sum_{i=1}^n \delta_{x_i}, \nu\right)$$

Subjects	Source	AISOTDA	SPDSW	LogSW	LEW	LES	SPDSW	LogSW	LEW	LES
		(Yair et al., 2019)	Transformations in $S_d^{++}(\mathbb{R})$		Descent over particles					
1	82.21	80.90	84.70	84.48	84.34	84.70	85.20	85.20	77.94	82.92
3	79.85	87.86	85.57	84.10	85.71	86.08	87.11	86.37	82.42	81.47
7	72.20	82.29	81.01	76.32	81.23	81.23	81.81	81.73	79.06	73.29
8	79.34	83.25	83.54	81.03	82.29	83.03	84.13	83.32	80.07	85.02
9	75.76	80.25	77.35	77.88	77.65	77.65	80.30	79.02	76.14	70.45
Avg. acc.	77.87	82.93	82.43	80.76	82.24	82.54	83.71	83.12	79.13	78.63
Avg. time (s)	-	-	4.34	4.32	11.41	12.04	3.68	3.67	8.50	11.43

Dataset Comparisons (Alvarez-Melis and Fusi, 2020)

- Consider datasets as feature-label pairs
- Embed labels in \mathbb{H}^{d_y}
- Dataset: Distribution in $\mathbb{R}^{d_x} imes \mathbb{H}^{d_y}$

SW

MNIST EMNIST FashionMNIST KMNIST USPS 0.45 MNIST 0.4±0.02 0.2±0.01 0.29±0.02 0.40 0.35 0.36±0.02 0.17±0.01 0.34±0.02 EMNIST 0.30 0.25 0.4±0.02 0.36±0.02 0.24+0.01 0.17+0.01 FashionMNIST 0.20 0.15 KMNIST 0.10 HSPS 0.29±0.02 0.34±0.02 0.17±0.01 0.18±0.01 0.05 0.00

Product HCHSW

 $^{2}/_{2}$

For 10^4 samples, 0.05s vs 120s.