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Motivations

Labeled dataset: D = ((a:i,yi)):;l, T EX, y, €Y
Typically: X =R%, Y ={1,...,C}

Goal: Generate samples from D respecting the structure of the dataset

Applications:

e Domain adaptation (Courty et al., 2016)

e Transfer learning (Alvarez-Melis and Fusi, 2021; Hua et al., 2023)
e Dataset distillation (Wang et al., 2018)
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Optimal Transport
Optimal Transport methods

e Compare probability distributions
e Leverage the geometry of the underlying space X




The Kantorovich Problem

Kantorovich Problem
Let p,v € Po(X), c: X x X = R,

OT, (i) = inf / o) dy(@,9),
YE(p,v)

M(p,v) = {y € PX xX), VACX, v(A xX) =u(A), (X x 4) =v(A)}

4

7
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The Wasserstein Distance

Wasserstein Distance

Let u,v € Po(R?), c(x,y) = ||z — y||3 for all z,y € R,

W3 )= i / e — 9112 dv(z,v)
YEI(p,v)

Properties:
‘W, distance
W2 (62, 0y) = Iz —yll2
Metrizes the weak convergence

(P2(R%), W) has a Riemannian structure
— Geodesics, Gradients...



Solving the OT Problem

Let @1,...,Tpn, Y1, Un ERL, a, BE X, u="1" @bz, v =21, Biby.,

W3, v) = min (C,P)r with C = (o — y113),
PeR?*™, Ply=a, PT1,=4 "



Solving the OT Problem

Let Tlyee s Tpy Yty Yn € Rdu auﬁ € Env n= Z?:l aiéziy v= E?:l ﬂléyll

W3, v) = min (C.P)p with C=(Jai—yl),,
PeR?*™, Ply=a, PT1,=4 J

Computational Complexity (Pele and Werman, 2009)

Numerical computation: Linear program in O(n3logn)
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Solving the OT Problem
Let @1,...,Tpn, Y1, Un ERL, a, BE X, u="1" @bz, v =21, Biby.,

W3, v) = min (C.P)p with C=(Jai—yl),,
PeR?*™, Ply=a, PT1,=4 J

Computational Complexity (Pele and Werman, 2009)

Numerical computation: Linear program in O(n3logn)

Sample Complexity (Boissard and Le Gouic, 2014)

n

For p1,v € Po(RY), @1,..., &0 ~ b, Y1, Yn ~ U, fly = 230 | 6,, and
= 130
Vn n =1 “Yir

E[[Wa(fin, ) — Wa(u,v)[] = O(n~ /%)

— curse of dimensionality



1D OT Problem

Let u, v € Pa(R),

e Cumulative distribution function:
Ve R, Fult) = ()~ oo,t]) = [ 1 we(o) du(o)

e Quantile function:
Yu € [0,1], Fu_l(u) =inf {z €R, F,(z) > u}

1D Wasserstein Distance

— — 2
Wi, v) = ; | F (u) = By (u)]” du =

— O(nlogn) .
/22



Sliced-Wasserstein Distance

T

Directions
e Source data
e Target data g

6=100°

S|

Definition (Sliced-Wasserstein (Rabin et al., 2011))
Let p,v € P2(R?),

SW%(N7 V) = e Wg(P;Z’:,ua P;Z:V) d>‘(0)7

where P?(x) = (x,0), A uniform measure on S91.

—7/22




Properties of the Sliced-Wasserstein Distance

Let @1,..., %0, Y1, -, yn ERY @, BE€ X, p =1 @by, v =D 1, Biby,.

Approximation via Monte-Carlo:

—=2
SW2L B, v Pae/’éapzfy)a

\Mh

01,...,00 ~ A

Properties:

Computational complexity: O(Lnlogn + Lnd)

Sample complexity: independent of the dimension (Nadjahi et al., 2020)
SW, distance (Bonnotte, 2013)

Topologically equivalent to the Wasserstein distance (Nadjahi et al., 2019), i.e
lim SW3(pun, 1) =0 <= lim W3 (i, p) = 0.
n— oo n—oo

v

ﬁz?
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Labeled Datasets

Dy : H1 = % Zzl (5(171’%1) S P(Rd X {1, .. .,C}),

Dy : Mo = % Z;nzl (5(93?7%2) S P(Rd X {17 .. ,C})
C: number of classes, n: number of sample in each class, m = nC'

Question: how to compare datasets D; and D5?




OTDD (Alvarez-Melis and Fusi, 2020)

Solution of Alvarez-Melis and Fusi (2020):
¢ Embed a label (a class) in P(R?) as ¢ vh = L 37" 6,51 iy for k=1,2

— Dyt u, = % Z?;l (5(1,?’11/16’?) S P(Rd X P(Rd))
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OTDD (Alvarez-Melis and Fusi, 2020)

Solution of Alvarez-Melis and Fusi (2020):
¢ Embed a label (a class) in P(R?) as ¢ vh = L 37" 6,51 iy for k=1,2

— Dyt u, = % Z?;l (5@?7”,16&) € P(Rd X P(Rd))

2
o Cost: d((@,y), (2",9))" = llz — 2'|lF + W3(vy,vy)
e Optimal transport distance: O(C?n®logn + n*C?log(nC))

OTDD(pu1, pi2) = . /d((way)7(w’,y’))2 dy((z,y), (=',9))-
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OTDD (Alvarez-Melis and Fusi, 2020)

Solution of Alvarez-Melis and Fusi (2020):
e Embed a label (a class) in R” x 5" (R) as ¢ — v ~ N (m}, X)) for k =1,2

—>DkZ/Lk2$22711(5<L m kzk )GP( RPXS;_+(R))

e Cost: d((z,y), (+',¢/))" = |z — 2/|3 + BW3 (1, 1)
e Optimal transport distance: approximated in O(C?d* + n*C?*log(nC)/<?)

OTDD¢ (p1, p2) = fyeHH;lE - /d z,y), (7', y)) dvy((z, ), (&, y)) + eH(7).

ﬁz



Contributions

o Model datasets as P = & >0 §,c € Po(P2(R%)) where v° = L 3
— MMD with positive definite kernel on P(R?)
e Sliced on P5(R? x P»(R))

n
i=1 5wf
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MMD on P, (P2(R?)) (Bonet et al., 2025b)

Maximum Mean Discrepancy

Let p,v € P(X), k: X x X — R a positive definite kernel.

MMDZ (41, / k() (s — v)(@)d(u — ) (1)

Positive Definite Kernels on P (P2(R?))

Let p,v € Po(R?), h > 0,
o Gaussian SW kernel: K(u,v) = e~ SW3(n.v)/(2h)
— Positive definite (Kolouri et al., 2016)

e Riesz SW kernel: K(u,v) = —SWa(u,v)
— Conditionally positive definite

Complexity: O(C?Ln(logn + d))
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Sliced on P»(R? x P5(R?))

e Sliced-Wasserstein on P2(X x Y) (Nguyen and Ho, 2024):
o Define 2 projections P? : X - R, Q®:Y =R
o For a € S*, define

Y(z,y) € X x Y, P*"?(z,y) = a1 P (z) + 02Q% (v)

o For pu,v € P2(X xY),

SW3 (i, v) = /WS(P;’G’d’m P;’e’d’u) dA\(a, 6, ¢)



Sliced on P»(R? x P5(R?))

e Sliced-Wasserstein on P2(X x Y) (Nguyen and Ho, 2024):
o Define 2 projections P? : X - R, Q®:Y =R
o For a € S*, define

V(z,y) € X x Y, P*??(x,y) = a1 P’ () + a2Q% (y)
o For pu,v € P2(X xY),
SW3 (i, v) = /WS(P;’e’d)m P;’9’¢u) dA\(a, 6, ¢)
e Sliced-Wasserstein on P, (R? x P2(R%)) (SOTDD) (Nguyen et al., 2025)

o Foralabel y € {1,...,C}, define p(y) = £ 37" | 6, 1(y,—y}
o Use for a € S¥,

PO‘G)‘(m Y) —alP ZaH_lM ( ))

with P? : R? — R, M* : P»(R?) — R the moment transform projection.
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Sliced on P»(R? x P5(R?))

e Sliced-Wasserstein on P2(X x Y) (Nguyen and Ho, 2024):
o Define 2 projections P? : X - R, Q®:Y =R
o For a € S*, define

V(z,y) € X x Y, P*??(x,y) = a1 P’ () + a2Q% (y)
o For pu,v € P2(X xY),
SW3 (i, v) = /V\/S(F’;’@’d)u7 P;’6’¢u) dA\(a, 6, ¢)
e Sliced-Wasserstein on P, (R? x P2(R%)) (SOTDD) (Nguyen et al., 2025)

o Foralabel y € {1,...,C}, define p(y) = £ 37" | 6, 1(y,—y}
o Use for a € S¥,

PO (z,y) = an PP (a Zau—lM wo(v)),

with P? : R? — R, M* : P»(R?) — R the moment transform projection.
— Use the Busemann function B* for projecting distributions on R

13/22



Busemann Function
Let po € P2(R?), t € Ry + s a geodesic ray starting from g

Busemann function in (P2(R?), Ws): B : P5(R?) — R

Vv € Po(RY), BH(v) = lim  Wa(ug,v) — kut,

t—+o0

with x, = Wa(uo, p1).

— Generalization of linear projections in Euclidean spaces
For zg,v € R, 2y = x¢ + t(v — x0),

d v _ g _ _ —
Ve €R% B(z) = lm o — ]2 —tllv — 2ol

Vv —Xo
= — €T — X -
® To = zoll2

14/22



Busemann Function
Let po € P2(R?), t € Ry + s a geodesic ray starting from g

Busemann function in (P2(R?), W3): B*: P5(R?) — R

Vv € Po(RY), B (v) = lim  Wa(uy,v) — K,

t—+oo

with Ry = Wg(,UO, /,L1)

— Generalization of linear projections in Euclidean spaces

In (Bonet et al., 2025a):
e Existence and characterization of geodesic rays on P5(R?)
e Closed-form in 1D:

Yv e P2(R), B‘u(ll) = —<F1_1 — Fo_l,Fy_l — F0_1>L2([O,1])-

¢ Closed-form in Gaussian case: For y; = N'(m;, %), v = N(m, %),
B*(v) = —(m1 — mg,m — mg) + tr (So(A — 1))

— tr (S} (B — Zpd — A% + £1)£5)3),

Ol

where A = ES% (=




Slicing Datasets with Busemann on Gaussian
With Gaussian approximation:

o Define Z(u) = N (m(p), 2(1))

o Forallye{1,...,C}, o(y) = 237 62, 1y,—y}

Q"(y) = B"(E(»(y))),
with 7 a geodesic ray on BW (R%)

a1 Pl (z) + aQ"(y)

P Y4

Computational Complexity: O(LCd? + LnC(log(nC) + d) 4+ d*Cn)
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Slicing Datasets with Busemann in 1D
With 1D Projection:
e Forallye{1,....C} o(y) = 2 30 62, 1y,—y)

Q" (y) = B"(PLe(y)),

with 7 a geodesic ray on Pa(R)

a1P!(z) + 02Q"(y)

Computation Complexity: O(LnC(log(nC) + d))
16
— /22



Correlation vs OTDD

Goal: Measure correlation between sliced distances and OTDD
— Compare randomly sampled subdatasets + Spearman and Pearson correlations

ps =079, pp = 0.77 ps = 0.92, pp = 0.91 ps = 0.93, pp = 0.93

20 25 30 2.0 25 3.0 15 20 25
SOTDD-10% (5000 projs) SWB1DG-10? (5000 projs) SWBG-10? (5000 projs)
MNIST

s P =071 pp =0.72 ps = 0.87, pp = 0.87 ps = 0.87, pp = 0.8

2320
2300
o 2280
g 2260
2240
2220
2200
2180

20 25 30 35 2.0 25 3.0
SOTDD-10? (5000 projs) SWB1DG-10* (5000 projs) SWBG-10% (5000 projs)
CIFAR10

ﬁz
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Minimizing on P»(P:(R?)) (Bonet et al., 2025b)
Goal: minimize F : P5(P2(R%)) — R

In practice: For P, = & Zc_l oo with g™ = 1 Zl 1 0ge, € Py(RY):

Vk > 0, particle (image) i, class ¢, o1 = 2§ — TVwy, F(Pk)(,uzn)(xfk)

P..: inter-class interaction, ,u;’": intra-class interaction, xf}k image
Vi, F(Pr) (1" ) (5 1) = nCIVF (X)), with F(x) = F(Py,), x = (27 )i.c



Synthetic Data
Goal: minimize F : P5(P2(R%)) — R

In practice: For P, = o Zc 1 Mcn with Mk -1 ZZ L0 € 'p2<Rd)

Vk >0, particle (image) i, class ¢, 77 ;.1 = 27, — TVwy, F(Pk)(,uz’”)(gc;k),

Let Q = %23:1 dye, V° ring
mpin F(P)=D(P,Q)

SOTDD SWB1DG SWBG
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In practice: For P, = o Zc 1 Mcn with Mk -1 ZZ L0 € 'p2<Rd)
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Synthetic Data
Goal: minimize F : P5(P2(R%)) — R
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Synthetic Data
Goal: minimize F : P5(P2(R%)) — R

In practice: For P, = o Zc 1 Mcn with Mk -1 Zl L0 € 'Pg(Rd)

Vk >0, particle (image) i, class ¢, 2,1 = 2§ — TVwy, F(Pk)(,ui’")(xf’k).

Let Q = %Zi’zl Oye, VC ring
mpin F(P)=D(P,Q)

kix,y) = =lx=yl2 K, v) = e~ Wil iz Kip,v) = = SWa(u, v)

QOO OO0 OO0



“Domain Adaptation”

Setting:
1. Pretrain a classifier on Q =MNIST

2. Flow starting from Py =Fashion MNIST (Left) or from Py =KMNIST (Right)
by minimizing F(P) = sMMD% (P,Q) with K (i, v) = —SWa(u,v)

3. Measure accuracy on P; (flowed data)

FMNIST KMNIST
100 100 1
9
© 95 95
5
(&) —
S 90 - 90 4 MMDSW'
—— OTDD (final)
85 1+ r r r r r 85 1+ r r . . T
0 5-10* 105 1.5-1052-1052.5-10° 0 5-10% 105 1.5-1052-1052.5-10°
Iterations Iterations

— reach 100% accuracy

ﬁz



Domain Adaptation”

Setting:

MNIST
Fashion MNIST (Left) or from Py

1. Pretrain a classifier on Q

—KMNIST (Right)
v)

_SWQ(/’(%

(P,Q) with K(u,v) =

IMMD%
(flowed data)

2. Flow starting from Pg
by minimizing F(P)

3. Measure accuracy on Py

[ S so[=]3[x[9 PS N}
S Y 5 Y S S S Y T 9
EEEEEEIIIIIEIII

IEI[IﬁIIIHDEﬂE!

) S S ST YA
o S N Y S ST ENTAY
i o N S ) S S S ST ENTAY
o S N Y S ST ENTAY
[~ (=[] [ [\[e[so] o] O[ QS |
o o N Y Y 55 S ST ENTAY
EEEGREEEE LIRS
SR E S SIS
SRR E S EEISIN
EEECRE DN N RSN
Innllllllllﬂlll

o e i ﬂﬂﬂﬂllﬂﬂﬂﬂ
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Applications

Dataset distillation: synthesize a big dataset Q = & 25:1 dyn with a small

dataset P = £ 3°

c
c=10ukr

k small

Transfer learning: augment a small dataset Q = % 260:1 . with k& small

Dataset distillation

Transfer learning

Dataset k& Y =AY =1d Baselines
DM MMDSW Random  Full data

1 611165 66.5:55 55.842.0

MNIST 10 882405 93.2007  922.,,  99.4
50 959109 97.010.2 97.640.2
1 544432  60.0441 49.017.5

FMNIST 10 T4.6410 T76.7119 75.3+0.7 92.4
50 813105 84.2:0, 83.210.2

Dataset &k Trainon Q MMDSW OTDD  (Hua et al., 2023)
1 26.015.3 405147 305142 36.4133
MtoF 5 38.546.7 61.5146 59.7418 62.7.1
10 53.947.9 654415 64.0414 66.2:,
100 M1ls1s 74.7408 - 73.550.7
1 184.5;  209.., 18812, 194410
Miok 5  B9m0  3dne 33 390410
° 10 30.9+46 447415 341409 441412
100 60.1+14 66.8.05 66.31009 62.411 9
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Conclusion

Conclusion:

o Efficient between Labeled Datasets

e Wasserstein over Wasserstein Gradient Flows

¢ Implementation on the MMD and Sliced Busemann Wasserstein

e Application to image datasets (Dataset distillation, Transfer learning...)

Perspectives:

e Use other positive definite kernels for the MMD (Bachoc et al., 2023; Kachaiev
and Recanatesi, 2024)

e Minimize other functionals (Catalano and Lavenant, 2024)

e Theoretical convergence
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Conclusion

Conclusion:

o Efficient between Labeled Datasets

e \Wasserstein over Wasserstein Gradient Flows

¢ Implementation on the MMD and Sliced Busemann Wasserstein

e Application to image datasets (Dataset distillation, Transfer learning...)

Perspectives:

e Use other positive definite kernels for the MMD (Bachoc et al., 2023; Kachaiev
and Recanatesi, 2024)

e Minimize other functionals (Catalano and Lavenant, 2024)

e Theoretical convergence

Thank you for your attention!
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