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Motivations

Labeled dataset: D =
(
(xi, yi)

)n
i=1

, xi ∈ X , yi ∈ Y
Typically: X = Rd, Y = {1, . . . , C}

Goal: Generate samples from D respecting the structure of the dataset

Applications:

• Domain adaptation (Courty et al., 2016)

• Transfer learning (Alvarez-Melis and Fusi, 2021; Hua et al., 2023)

• Dataset distillation (Wang et al., 2018)

1/22

1/22



Motivations

Labeled dataset: D =
(
(xi, yi)

)n
i=1

, xi ∈ X , yi ∈ Y
Typically: X = Rd, Y = {1, . . . , C}
Goal: Generate samples from D respecting the structure of the dataset

Applications:

• Domain adaptation (Courty et al., 2016)

• Transfer learning (Alvarez-Melis and Fusi, 2021; Hua et al., 2023)

• Dataset distillation (Wang et al., 2018)

1/22

1/22



Motivations

Labeled dataset: D =
(
(xi, yi)

)n
i=1

, xi ∈ X , yi ∈ Y
Typically: X = Rd, Y = {1, . . . , C}
Goal: Generate samples from D respecting the structure of the dataset

Applications:

• Domain adaptation (Courty et al., 2016)

• Transfer learning (Alvarez-Melis and Fusi, 2021; Hua et al., 2023)

• Dataset distillation (Wang et al., 2018)

1/22

1/22



Table of Contents

Optimal Transport

Optimal Transport between Labeled Datasets

Flowing Datasets



Optimal Transport
Optimal Transport methods

• Compare probability distributions
• Leverage the geometry of the underlying space X
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The Kantorovich Problem

Kantorovich Problem

Let µ, ν ∈ P2(X), c : X×X → R,

OTc(µ, ν) = inf
γ∈Π(µ,ν)

∫
c(x, y) dγ(x, y),

Π(µ, ν) =
{
γ ∈ P(X×X), ∀A ⊂ X, γ(A×X) = µ(A), γ(X×A) = ν(A)

}
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The Wasserstein Distance

Wasserstein Distance

Let µ, ν ∈ P2(Rd), c(x, y) = ∥x− y∥22 for all x, y ∈ Rd,

W2
2(µ, ν) = inf

γ∈Π(µ,ν)

∫
∥x− y∥22 dγ(x, y)

Properties:

• W2 distance

• W2(δx, δy) = ∥x− y∥2
• Metrizes the weak convergence

• (P2(Rd),W2) has a Riemannian structure
→ Geodesics, Gradients...
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Solving the OT Problem
Let x1, . . . , xn, y1, . . . , yn ∈ Rd, α, β ∈ Σn, µ =

∑n
i=1 αiδxi

, ν =
∑n

i=1 βiδyi
,

W2
2(µ, ν) = min

P∈Rn×n
+ , P1n=α, PT 1n=β

⟨C,P ⟩F with C =
(
∥xi − yj∥22

)
i,j

Computational Complexity (Pele and Werman, 2009)

Numerical computation: Linear program in O(n3 log n)

Sample Complexity (Boissard and Le Gouic, 2014)

For µ, ν ∈ P2(Rd), x1, . . . , xn ∼ µ, y1, . . . , yn ∼ ν, µ̂n = 1
n

∑n
i=1 δxi

and
ν̂n = 1

n

∑n
i=1 δyi ,

E
[
|W2(µ̂n, ν̂n)−W2(µ, ν)|

]
= O(n−1/d)

→ curse of dimensionality
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1D OT Problem
Let µ, ν ∈ P2(R),

• Cumulative distribution function:

∀t ∈ R, Fµ(t) = µ
(
]−∞, t]

)
=

∫
1]−∞,t](x) dµ(x)

• Quantile function:

∀u ∈ [0, 1], F−1
µ (u) = inf

{
x ∈ R, Fµ(x) ≥ u

}
1D Wasserstein Distance

W2
2(µ, ν) =

∫ 1

0

∣∣F−1
µ (u)− F−1

ν (u)
∣∣2 du =

∥∥F−1
µ − F−1

ν

∥∥2
L2([0,1])

Let x1 < · · · < xn, y1 < · · · < yn, µ = 1
n

∑n
i=1 δxi , ν = 1

n

∑n
i=1 δyi ,

W2
2(µ, ν) =

1

n

n∑
i=1

(xi − yi)
2

→ O(n log n)
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Sliced-Wasserstein Distance

Directions
Source data
Target data =

40
o

=
10

0o
=

16
0o

Definition (Sliced-Wasserstein (Rabin et al., 2011))

Let µ, ν ∈ P2(Rd),

SW2
2(µ, ν) =

∫
Sd−1

W2
2(P

θ
#µ, P

θ
#ν) dλ(θ),

where P θ(x) = ⟨x, θ⟩, λ uniform measure on Sd−1.
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Properties of the Sliced-Wasserstein Distance

Let x1, . . . , xn, y1, . . . , yn ∈ Rd, α, β ∈ Σn, µ =
∑n

i=1 αiδxi
, ν =

∑n
i=1 βiδyi

.

Approximation via Monte-Carlo:

ŜW
2

2,L(µ, ν) =
1

L

L∑
ℓ=1

W2
2(P

θℓ
# µ, P θℓ

# ν),

θ1, . . . , θL ∼ λ.

Properties:

• Computational complexity: O(Ln log n+ Lnd)

• Sample complexity: independent of the dimension (Nadjahi et al., 2020)

• SW2 distance (Bonnotte, 2013)

• Topologically equivalent to the Wasserstein distance (Nadjahi et al., 2019), i.e.
lim
n→∞

SW2
2(µn, µ) = 0 ⇐⇒ lim

n→∞
W2

2(µn, µ) = 0.
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Labeled Datasets

D1 : µ1 = 1
m

∑m
i=1 δ(x1

i ,y
1
i )

∈ P(Rd × {1, . . . , C}),
D2 : µ2 = 1

m

∑m
j=1 δ(x2

j ,y
2
j )

∈ P(Rd × {1, . . . , C})
C: number of classes, n: number of sample in each class, m = nC

Question: how to compare datasets D1 and D2?
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OTDD (Alvarez-Melis and Fusi, 2020)

Solution of Alvarez-Melis and Fusi (2020):

• Embed a label (a class) in P(Rd) as c 7→ νkc = 1
n

∑n
i=1 δxk

i
1{yk

i =c} for k = 1, 2

→ Dk : µk = 1
m

∑m
i=1 δ(xk

i ,ν
k

yk
i

) ∈ P
(
Rd × P(Rd)

)

• Cost: d
(
(x, y), (x′, y′)

)2
= ∥x− x′∥22 +W2

2(νy, νy′)

• Optimal transport distance: O
(
C2n3 log n+ n3C3 log(nC)

)
OTDD(µ1, µ2) = inf

γ∈Π(µ1,µ2)

∫
d
(
(x, y), (x′, y′)

)2
dγ

(
(x, y), (x′, y′)

)
.
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OTDD (Alvarez-Melis and Fusi, 2020)

Solution of Alvarez-Melis and Fusi (2020):

• Embed a label (a class) in Rp × S++
p (R) as c 7→ νkc ≈ N (mk

c ,Σ
k
c ) for k = 1, 2

→ Dk : µk = 1
m

∑m
i=1 δ(xk

i ,m
k

yk
i

,Σk

yk
i

) ∈ P
(
Rd × Rp × S++

p (R)
)

• Cost: d
(
(x, y), (x′, y′)

)2
= ∥x− x′∥22 +BW2

2(νy, νy′)

• Optimal transport distance: approximated in O
(
C2d3 + n2C2 log(nC)/ε2

)
OTDDε(µ1, µ2) = inf

γ∈Π(µ1,µ2)

∫
d
(
(x, y), (x′, y′)

)2
dγ

(
(x, y), (x′, y′)

)
+ εH(γ).
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Contributions

• Model datasets as P = 1
C

∑C
c=1 δνc ∈ P2

(
P2(Rd)

)
where νc = 1

n

∑n
i=1 δxc

i

→ MMD with positive definite kernel on P(Rd)

• Sliced on P2

(
Rd × P2(Rd)

)

11/22
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MMD on P2

(
P2(Rd)

)
(Bonet et al., 2025b)

Maximum Mean Discrepancy

Let µ, ν ∈ P(X), k : X ×X → R a positive definite kernel.

MMD2
k(µ, ν) =

∫∫
k(x, y) d(µ− ν)(x)d(µ− ν)(y)

Positive Definite Kernels on P2

(
P2(Rd)

)
Let µ, ν ∈ P2(Rd), h > 0,

• Gaussian SW kernel: K(µ, ν) = e−SW2
2(µ,ν)/(2h)

→ Positive definite (Kolouri et al., 2016)

• Riesz SW kernel: K(µ, ν) = −SW2(µ, ν)
→ Conditionally positive definite

Complexity: O
(
C2Ln(log n+ d)

)
12/22
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Sliced on P2

(
Rd × P2(Rd)

)
• Sliced-Wasserstein on P2(X × Y ) (Nguyen and Ho, 2024):
◦ Define 2 projections P θ : X → R, Qϕ : Y → R
◦ For α ∈ S1, define

∀(x, y) ∈ X × Y, Pα,θ,ϕ(x, y) = α1P
θ(x) + α2Q

ϕ(y)

◦ For µ, ν ∈ P2(X × Y ),

SW2
2(µ, ν) =

∫
W2

2(P
α,θ,ϕ
# µ, Pα,θ,ϕ

# ν) dλ(α, θ, ϕ)

• Sliced-Wasserstein on P2

(
Rd × P2(Rd)

)
(SOTDD) (Nguyen et al., 2025)

◦ For a label y ∈ {1, . . . , C}, define φ(y) = 1
n

∑m
i=1 δxi1{yi=y}

◦ Use for α ∈ Sk,

Pα,θ,λ(x, y) = α1P
θ(x) +

k∑
i=1

αi+1Mλi
(
P θ
#φ(y)

)
,

with P θ : Rd → R, Mλ : P2(Rd) → R the moment transform projection.

→ Use the Busemann function Bµ for projecting distributions on R
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Busemann Function
Let µ0 ∈ P2(Rd), t ∈ R+ 7→ µt a geodesic ray starting from µ0

Busemann function in
(
P2(Rd),W2

)
: Bµ : P2(Rd) → R

∀ν ∈ P2(R
d), Bµ(ν) = lim

t→+∞
W2(µt, ν)− κµt,

with κµ = W2(µ0, µ1).

→ Generalization of linear projections in Euclidean spaces

For x0, v ∈ Rd, xt = x0 + t(v − x0),

∀x ∈ Rd, Bv(x) = lim
t→+∞

∥x− xt∥2 − t∥v − x0∥2

= −
〈
x− x0,

v − x0
∥v − x0∥2

〉

In (Bonet et al., 2025a):
• Existence and characterization of geodesic rays on P2(Rd)
• Closed-form in 1D:

∀ν ∈ P2(R), B
µ(ν) = −⟨F−1

1 − F−1
0 , F−1

ν − F−1
0 ⟩L2([0,1]).

• Closed-form in Gaussian case: For µi = N (mi,Σi), ν = N (m,Σ),
Bµ(ν) = −⟨m1 −m0,m−m0⟩+ tr

(
Σ0(A− Id)

)
− tr

(
(Σ

1
2 (Σ0 − Σ0A−AΣ0 +Σ1)Σ

1
2 )

1
2

)
,

where A = Σ
− 1

2
0 (Σ

1
2
0 Σ1Σ

1
2
0 )

1
2Σ

− 1
2

0 .
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Slicing Datasets with Busemann on Gaussian
With Gaussian approximation:

• Define Ξ(µ) = N
(
m(µ),Σ(µ)

)
• For all y ∈ {1, . . . , C}, φ(y) = 1

n

∑m
i=1 δxi1{yi=y}

Qη(y) = Bη
(
Ξ(φ(y))

)
,

with η a geodesic ray on BW (Rd)

Computational Complexity: O
(
LCd3 + LnC(log(nC) + d) + d2Cn)
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Slicing Datasets with Busemann in 1D
With 1D Projection:

• For all y ∈ {1, . . . , C}, φ(y) = 1
n

∑m
i=1 δxi

1{yi=y}

Qη,θ(y) = Bη
(
P θ
#φ(y)

)
,

with η a geodesic ray on P2(R)

Computation Complexity: O
(
LnC(log(nC) + d)

)
16/22
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Correlation vs OTDD
Goal: Measure correlation between sliced distances and OTDD
→ Compare randomly sampled subdatasets + Spearman and Pearson correlations

2.0 2.5 3.0
SOTDD·102 (5000 projs)

280
285
290
295
300
305
310
315
320

O
T

D
D

ρS = 0.79, ρP = 0.77

2.0 2.5 3.0
SWB1DG·102 (5000 projs)

ρS = 0.92, ρP = 0.91

1.5 2.0 2.5
SWBG·102 (5000 projs)

ρS = 0.93, ρP = 0.93

MNIST

3 4 5 6
SOTDD·102 (5000 projs)

2180
2200
2220
2240
2260
2280
2300
2320
2340

O
T

D
D

ρS = 0.71, ρP = 0.72

2.0 2.5 3.0 3.5
SWB1DG·102 (5000 projs)

ρS = 0.87, ρP = 0.87

2.0 2.5 3.0
SWBG·102 (5000 projs)

ρS = 0.87, ρP = 0.88

CIFAR10

17/22

17/22



Table of Contents

Optimal Transport

Optimal Transport between Labeled Datasets

Flowing Datasets



Minimizing on P2

(
P2(Rd)

)
(Bonet et al., 2025b)

Goal: minimize F : P2

(
P2(Rd)

)
→ R

In practice: For Pk = 1
C

∑C
c=1 δµc,n

k
with µc,n

k = 1
n

∑n
i=1 δxc

i,k
∈ P2(Rd):

∀k ≥ 0, particle (image) i, class c, xci,k+1 = xci,k − τ∇WW2
F(Pk)(µ

c,n
k )(xci,k).

Pk: inter-class interaction, µ
c,n
k : intra-class interaction, xci,k image

∇WW2
F(Pk)(µ

c,n
k )(xci,k) = nC[∇F (x)]i,c with F (x) = F(Pk), x = (xci,k)i,c

18/22

18/22



Synthetic Data
Goal: minimize F : P2

(
P2(Rd)

)
→ R

In practice: For Pk = 1
C

∑C
c=1 δµc,n

k
with µc,n

k = 1
n

∑n
i=1 δxc

i,k
∈ P2(Rd):

∀k ≥ 0, particle (image) i, class c, xci,k+1 = xci,k − τ∇WW2
F(Pk)(µ

c,n
k )(xci,k).

Let Q = 1
3

∑3
c=1 δνc , νc ring

min
P

F(P) = D(P,Q)
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k = 1
n

∑n
i=1 δxc

i,k
∈ P2(Rd):

∀k ≥ 0, particle (image) i, class c, xci,k+1 = xci,k − τ∇WW2
F(Pk)(µ

c,n
k )(xci,k).

Let Q = 1
3

∑3
c=1 δνc , νc ring

min
P

F(P) = D(P,Q)
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“Domain Adaptation”

Setting:

1. Pretrain a classifier on Q =MNIST

2. Flow starting from P0 =Fashion MNIST (Left) or from P0 =KMNIST (Right)
by minimizing F(P) = 1

2MMD2
K(P,Q) with K(µ, ν) = −SW2(µ, ν)

3. Measure accuracy on Pt (flowed data)
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→ reach 100% accuracy
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Applications

Dataset distillation: synthesize a big dataset Q = 1
C

∑C
c=1 δνn

c
with a small

dataset P = 1
C

∑C
c=1 δµk

c
, k small

Transfer learning: augment a small dataset Q = 1
C

∑C
c=1 δνk

c
with k small

Dataset distillation

Dataset k ψθ = Aω = Id Baselines
DM MMDSW Random Full data

MNIST
1 61.1±6.5 66.5±5.5 55.8±2.0

10 88.2±2.8 93.2±0.7 92.2±1.1 99.4
50 95.9±0.9 97.0±0.2 97.6±0.2

FMNIST
1 54.4±3.2 60.0±4.1 49.0±7.5

10 74.6±1.0 76.7±1.0 75.3±0.7 92.4
50 81.3±0.5 84.2±0.1 83.2±0.2

Transfer learning

Dataset k Train on Q MMDSW OTDD (Hua et al., 2023)

M to F

1 26.0±5.3 40.5±4.7 30.5±4.2 36.4±3.3

5 38.5±6.7 61.5±4.6 59.7±1.8 62.7±1.1

10 53.9±7.9 65.4±1.5 64.0±1.4 66.2±1.0

100 71.1±1.5 74.7±0.8 - 73.5±0.7

M to K

1 18.4±3.1 20.9±2.0 18.8±2.1 19.4±1.9

5 25.9±4.0 37.4±2.2 31.3±1.4 39.0±1.0

10 30.9±4.6 44.7±1.8 34.1±0.9 44.1±1.2

100 60.1±1.1 66.8±0.8 66.3±0.9 62.4±1.2
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Conclusion

Conclusion:

• Efficient between Labeled Datasets

• Wasserstein over Wasserstein Gradient Flows

• Implementation on the MMD and Sliced Busemann Wasserstein

• Application to image datasets (Dataset distillation, Transfer learning...)

Perspectives:

• Use other positive definite kernels for the MMD (Bachoc et al., 2023; Kachaiev
and Recanatesi, 2024)

• Minimize other functionals (Catalano and Lavenant, 2024)

• Theoretical convergence

Thank you for your attention!
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