Clément Bonet¹, Nicolas Courty¹, François Septier¹, Lucas Drumetz²

¹Université Bretagne Sud ²IMT Atlantique

GDR ISIS - Optimal Transport and Statistical Learning \$18/11/2021\$

1 Gradient Flows on Euclidean Space

2 Wasserstein Gradient Flows

3 Sliced-Wasserstein Gradient Flows

- SW-JKO Scheme
- Empirical Results

Let $X = \mathbb{R}^p$, d a distance (e.g. $d(x, y) = ||x - y||_2$), $F : X \to \mathbb{R}$. Goal:

 $\min_x F(x)$

Let $X = \mathbb{R}^p$, d a distance (e.g. $d(x, y) = ||x - y||_2$), $F : X \to \mathbb{R}$. Goal:

 $\min_x F(x)$

Definition (Gradient Flow on \mathbb{R}^p)

A gradient flow is a curve $x:[0,T]\to X$ which decreases as much as possible along the functional F.

i.e. If F is differentiable, x follows the Cauchy problem

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t}(t) = -\nabla F(x(t)) \\ x(0) = x_0 \end{cases}$$

If ${\boldsymbol{F}}$ is differentiable, ${\boldsymbol{x}}$ follows the Cauchy problem

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t}(t) = -\nabla F(x(t)) \\ x(0) = x_0 \end{cases}$$

Solving the ODE in practice:

If ${\boldsymbol{F}}$ is differentiable, ${\boldsymbol{x}}$ follows the Cauchy problem

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t}(t) = -\nabla F(x(t)) \\ x(0) = x_0 \end{cases}$$

Solving the ODE in practice:

• Explicit Euler scheme $(x_k = x(k\tau))$:

$$x_{k+1} = x_k - \tau \nabla F(x_k)$$

If ${\boldsymbol{F}}$ is differentiable, ${\boldsymbol{x}}$ follows the Cauchy problem

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t}(t) = -\nabla F(x(t)) \\ x(0) = x_0 \end{cases}$$

Solving the ODE in practice:

• Explicit Euler scheme ($x_k = x(k\tau)$):

$$x_{k+1} = x_k - \tau \nabla F(x_k)$$

• Implicit Euler scheme:

$$\begin{aligned} x_{k+1} &= x_k - \tau \nabla F(x_{k+1}) \iff 0 = \frac{x_{k+1} - x_k}{\tau} + \nabla F(x_{k+1}) \\ \iff x_{k+1} \in \operatorname*{argmin}_{x \in X} \quad \frac{\|x - x_k\|_2^2}{2\tau} + F(x) \\ \iff x_{k+1} = \operatorname{prox}_{\tau F}(x_k) \end{aligned}$$

Definition (Wasserstein Distance)

Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$,

$$W_2^2(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int \|x-y\|_2^2 \,\mathrm{d}\gamma(x,y)$$

where $\Pi(\mu,\nu) = \{\gamma \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d), \ \pi_{\#}^1 \gamma = \mu, \ \pi_{\#}^2 \gamma = \nu\}.$

Wasserstein Gradient Flows

Gradient Flow in $(\mathcal{P}_2(\mathbb{R}^d), W_2)$: Iterated Minimization scheme (JKO Scheme) [Jordan et al., 1998]:

$$\mu_{k+1}^{\tau} \in \operatorname*{argmin}_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \frac{1}{2\tau} W_2^2(\mu, \mu_k^{\tau}) + F(\mu)$$

Wasserstein Gradient Flows

Gradient Flow in $(\mathcal{P}_2(\mathbb{R}^d), W_2)$: Iterated Minimization scheme (JKO Scheme) [Jordan et al., 1998]:

$$\mu_{k+1}^{\tau} \in \operatorname*{argmin}_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \ \frac{1}{2\tau} W_2^2(\mu, \mu_k^{\tau}) + F(\mu)$$

Examples

• $F(\mu) = \int \rho(x) \log \rho(x) dx + \int V(x)\rho(x) dx$ if $d\mu = \rho dLeb$ Solution in the limit $\tau \to 0$ to the PDE: (Fokker-Planck)

$$\partial_t \rho_t = \operatorname{div}(\rho_t \nabla V) + \Delta \rho_t$$

• $F(\mu) = \frac{1}{2}SW_2^2(\mu, \nu) + \lambda \mathcal{H}(\mu)$ [Bonnotte, 2013, Liutkus et al., 2019]

- $F(\mu) = \frac{1}{2}MMD^2(\mu, \nu)$ [Arbel et al., 2019]
- $F(\mu) = \frac{1}{2} \text{KSD}^2(\mu, \nu)$ [Korba et al., 2021]

• If an associated SDE is known, simulate from it [Liu et al., 2021, Liutkus et al., 2019, Arbel et al., 2019, Korba et al., 2021]

Examples

Let $F(\mu) = \int V(x)\rho(x)dx + \int \log(\rho(x))\rho(x)dx$, Gradient Flow solution of:

$$\partial_t \rho_t = \operatorname{div}(\rho_t \nabla V) + \Delta \rho_t$$

Associated SDE (Langevin Equation):

 $\mathrm{d}X_t = -\nabla V(X_t)\mathrm{d}t + \sqrt{2} \,\mathrm{d}W_t$

- If the SDE is known, simulate from it
- Solving the JKO scheme by discretizing the grid:
 - Entropic regularized scheme on a discretized grid [Peyré, 2015, Carlier et al., 2017]
 - Methods based on the dynamic formulation of the transport [Laborde, 2016, Carrillo et al., 2021]

- If the SDE is known, simulate from it
- Solving the JKO scheme by discretizing the grid
- Using Neural Networks, *e.g.* JKOICNN [Alvarez-Melis et al., 2021, Mokrov et al., 2021, Bunne et al., 2021]

JKOICNN

Theorem (Brenier's Theorem)

Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, μ absolutely continuous with respect to the Lebesgue measure. Then, the optimal coupling γ^* is unique and of the form $\gamma^* = (Id, \nabla \varphi)_{\#} \mu$ with $\nabla \varphi$ is a convex function.

JKOICNN

Theorem (Brenier's Theorem)

Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, μ absolutely continuous with respect to the Lebesgue measure. Then, the optimal coupling γ^* is unique and of the form $\gamma^* = (Id, \nabla \varphi)_{\#} \mu$ with $\nabla \varphi$ is a convex function.

• Reformulate the problem as:

$$u_{k+1}^{\tau} \in \underset{u \in \text{cvx}}{\operatorname{argmin}} \ \frac{1}{2\tau} \int \|\nabla u(x) - x\|_2^2 \ \rho_k^{\tau}(x) \mathrm{d}x + F\left((\nabla u)_{\#} \rho_k^{\tau}\right)$$

- Implicitly define $\rho_{k+1}^\tau = (\nabla u_{k+1}^\tau)_{\#} \rho_k^\tau$
- Use Input Convex Neural Networks (ICNN) [Amos et al., 2017] to model the convex functions:

$$\theta_{k+1}^{\tau} \in \operatorname*{argmin}_{\theta \in \{\theta, u_{\theta} \in \mathrm{ICNN}\}} \frac{1}{2\tau} \int \|\nabla_x u_{\theta}(x) - x\|_2^2 \rho_k^{\tau}(x) \mathrm{d}x + F\big((\nabla_x u_{\theta})_{\#} \rho_k^{\tau}\big)$$

- Backpropagate through gradient
- O(k²) evaluations

Definition (Sliced-Wasserstein Distance [Rabin et al., 2011])

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$,

$$SW_2^2(\mu,\nu) = \int_{S^{d-1}} W_2^2(P_{\#}^{\theta}\mu, P_{\#}^{\theta}\nu) \ \lambda(\mathrm{d}\theta)$$

where $P^{\theta}(x) = \langle x, \theta \rangle$, λ uniform measure on $S^{d-1} = \{ \theta \in \mathbb{R}^d, \|\theta\|_2 = 1 \}.$

Properties:

- Distance
- Equivalent to W_2 for compact supported measures [Bonnotte, 2013]
- Metrizes the weak convergence as W_2 [Nadjahi et al., 2019]
- Easy to approximate

Goal:

 $\min_{\mu\in\mathcal{P}(\mathbb{R}^d)} F(\mu)$

JKO scheme in $(P_2(\mathbb{R}^d), SW_2)$:

$$\mu_{k+1}^\tau \in \mathop{\rm argmin}_{\mu} \; \frac{1}{2\tau} SW_2^2(\mu, \mu_k^\tau) + F(\mu)$$

Goal:

 $\min_{\mu\in\mathcal{P}(\mathbb{R}^d)}\ F(\mu)$

JKO scheme in $(P_2(\mathbb{R}^d), SW_2)$:

$$\mu_{k+1}^{\tau} \in \underset{\mu}{\operatorname{argmin}} \ \frac{1}{2\tau} SW_2^2(\mu, \mu_k^{\tau}) + F(\mu)$$

- Analysis of the SW-JKO scheme
 - Discrete solution at each step if e.g. F convex and lsc.
 - Unique solution at each step if e.g. μ_k^τ absolutely continuous or F strictly convex.
 - F non increasing along $(\mu_k^{\tau})_k$.

Goal:

 $\min_{\mu\in\mathcal{P}(\mathbb{R}^d)}\ F(\mu)$

JKO scheme in $(P_2(\mathbb{R}^d), SW_2)$:

$$\mu_{k+1}^{\tau} \in \underset{\mu}{\operatorname{argmin}} \ \frac{1}{2\tau} SW_2^2(\mu, \mu_k^{\tau}) + F(\mu)$$

- Analysis of the SW-JKO scheme
 - Discrete solution at each step if e.g. F convex and lsc.
 - Unique solution at each step if e.g. μ_k^{τ} absolutely continuous or F strictly convex.
 - F non increasing along $(\mu_k^{\tau})_k$.
- Pass to the limit
 - Does the gradient flow exist? In which sense?
 - Is the limit solution to a PDE?

Solving the SW-JKO Scheme in Practice

• Use a discretized grid $(x_i)_{i=1}^N$, model $\mu = \sum_{i=1}^N \rho_i \delta_{x_i}$ and learn the weights:

$$\min_{(\rho_i)_i \in \Sigma_N} \frac{SW_2^2(\sum_{i=1}^N \rho_i \delta_{x_i}, \mu_k^{\mathsf{T}})}{2\tau} + F(\sum_{i=1}^N \rho_i \delta_{x_i})$$

Solving the SW-JKO Scheme in Practice

• Use a discretized grid $(x_i)_{i=1}^N$, model $\mu = \sum_{i=1}^N \rho_i \delta_{x_i}$ and learn the weights:

$$\min_{(\rho_i)_i \in \Sigma_N} \frac{SW_2^2(\sum_{i=1}^N \rho_i \delta_{x_i}, \mu_k^{\tau})}{2\tau} + F(\sum_{i=1}^N \rho_i \delta_{x_i})$$

• Learn particles, i.e. $\mu = \frac{1}{N}\sum_{i=1}^N \delta_{x_i}$ and solve

$$\min_{(x_i)_i} \frac{SW_2^2(\frac{1}{N}\sum_{i=1}^N \delta_{x_i}, \mu_k^{\tau})}{2\tau} + F(\frac{1}{N}\sum_{i=1}^N \delta_{x_i})$$

Solving the SW-JKO Scheme in Practice

• Use a discretized grid $(x_i)_{i=1}^N$, model $\mu = \sum_{i=1}^N \rho_i \delta_{x_i}$ and learn the weights:

$$\min_{(\rho_i)_i \in \Sigma_N} \frac{SW_2^2(\sum_{i=1}^N \rho_i \delta_{x_i}, \mu_k^{\tau})}{2\tau} + F(\sum_{i=1}^N \rho_i \delta_{x_i})$$

• Learn particles, i.e. $\mu = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}$ and solve

$$\min_{(x_i)_i} \frac{SW_2^2(\frac{1}{N}\sum_{i=1}^N \delta_{x_i}, \mu_k^{\tau})}{2\tau} + F(\frac{1}{N}\sum_{i=1}^N \delta_{x_i})$$

• Use a generative model (e.g. NF), *i.e.* $\mu = (g_{\theta})_{\#} p_Z$ with p_Z a standard distribution:

$$\min_{\theta} \frac{SW_2^2((g_{\theta}^{k+1})_{\#}p_Z, \mu_k^{\tau})}{2\tau} + F((g_{\theta}^{k+1})_{\#}p_Z)$$

Fokker-Planck

$$F(\mu) = \int V d\mu + \int \log(\rho(x))\rho(x) dx$$
 with $V(x) = \frac{1}{2}(x-m)^T A(x-m)$, $\mu^* \propto e^{-V}$, *i.e.* $\mu^* = \mathcal{N}(m, A^{-1})$.

Fokker-Planck

Figure: On the left, SymKL divergence between solutions at time t = 8d (using $\tau = 0.1$ and 80 steps) and stationary measure. On the right, SymKL between the true WGF μ_t and the approximation with JKO-ICNN $\hat{\mu_t}$, run through 3 Gaussians with $\tau = 0.1$. We observe unstabilities at some point.

Aggregation Equation

$$\mathcal{W}(\mu) = \frac{1}{2} \iint W(x-y) \mathrm{d}\mu(x) \mathrm{d}\mu(y)$$
 with $W(x) = \frac{\|x\|^4}{4} - \frac{\|x\|^2}{2}$ [Carrillo et al., 2021].

Figure: Steady state of the aggregation equation.

Table: Runtime on RTX2080TI.

Sliced-Wasserstein Flows [Liutkus et al., 2019]

 $F(\mu) = SW_2^2(\mu,\nu)$

Figure: Generated sample obtained through a pretrained decoder (d = 48).

- Empirical study of Sliced-Wasserstein gradient flows
- Flexible implementations

Future work

- Theoretical study of SWGFs
- Use variant or approximation of SW in high dimension
- Other distance such as max-SW

- Empirical study of Sliced-Wasserstein gradient flows
- Flexible implementations

Future work

- Theoretical study of SWGFs
- Use variant or approximation of SW in high dimension
- Other distance such as max-SW

Thank you!

References I

- David Alvarez-Melis, Yair Schiff, and Youssef Mroueh. Optimizing functionals on the space of probabilities with input convex neural networks, 2021.
- Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In *International Conference on Machine Learning*, pages 146–155. PMLR, 2017.
- Michael Arbel, Anna Korba, Adil Salim, and Arthur Gretton. Maximum mean discrepancy gradient flow. *arXiv preprint arXiv:1906.04370*, 2019.
- Nicolas Bonnotte. Unidimensional and evolution methods for optimal transportation. PhD thesis, Paris 11, 2013.
- Charlotte Bunne, Laetitia Meng-Papaxanthos, Andreas Krause, and Marco Cuturi. Jkonet: Proximal optimal transport modeling of population dynamics, 2021.
- Guillaume Carlier, Vincent Duval, Gabriel Peyré, and Bernhard Schmitzer. Convergence of entropic schemes for optimal transport and gradient flows. *SIAM Journal on Mathematical Analysis*, 49(2):1385–1418, 2017.
- Jose A Carrillo, Katy Craig, Li Wang, and Chaozhen Wei. Primal dual methods for wasserstein gradient flows. *Foundations of Computational Mathematics*, pages 1–55, 2021.

- Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–planck equation. *SIAM journal on mathematical analysis*, 29(1): 1–17, 1998.
- Anna Korba, Pierre-Cyril Aubin-Frankowski, Szymon Majewski, and Pierre Ablin. Kernel stein discrepancy descent. *arXiv preprint arXiv:2105.09994*, 2021.
- Maxime Laborde. Interacting particles systems, Wasserstein gradient flow approach. PhD thesis, PSL Research University, 2016.
- Shu Liu, Haodong Sun, and Hongyuan Zha. Approximating the optimal transport plan via particle-evolving method, 2021.
- Antoine Liutkus, Umut Simsekli, Szymon Majewski, Alain Durmus, and Fabian-Robert Stöter. Sliced-wasserstein flows: Nonparametric generative modeling via optimal transport and diffusions. In *International Conference on Machine Learning*, pages 4104–4113. PMLR, 2019.
- Petr Mokrov, Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, and Evgeny Burnaev. Large-scale wasserstein gradient flows, 2021.

- Kimia Nadjahi, Alain Durmus, Umut Şimşekli, and Roland Badeau. Asymptotic guarantees for learning generative models with the sliced-wasserstein distance. *arXiv preprint arXiv:1906.04516*, 2019.
- Gabriel Peyré. Entropic approximation of wasserstein gradient flows. *SIAM Journal on Imaging Sciences*, 8(4):2323–2351, 2015.
- Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application to texture mixing. In *International Conference on Scale Space and Variational Methods in Computer Vision*, pages 435–446. Springer, 2011.