Flowing Datasets with Wasserstein over Wasserstein Gradient Flows

Clément Bonet¹

Joint work with Christophe Vauthier², Anna Korba¹

¹ENSAE, CREST, Institut Polytechnique de Paris ²Université Paris-Saclay, Laboratoire de Mathématique d'Orsay

GT CalVa 10/02/2025

Motivations

Labeled dataset: $\mathcal{D} = ((x_i, y_i))_{i=1}^n$, $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$ Typically: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{1, \dots, C\}$

Goal: Generate samples from $\mathcal D$ respecting the structure of the dataset

Motivations

Labeled dataset: $\mathcal{D} = ((x_i, y_i))_{i=1}^n$, $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$ Typically: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{1, \dots, C\}$

Goal: Generate samples from \mathcal{D} respecting the structure of the dataset **Applications**:

- Domain adaptation (Courty et al., 2016)
- Transfer learning (Alvarez-Melis and Fusi, 2021; Hua et al., 2023)
- Dataset distillation (Wang et al., 2018)
- Conditional generative modeling (Chemseddine et al., 2024)

Table of Contents

Comparing Datasets

Wasserstein Gradient Flows

Wasserstein over Wasserstein Gradient Flows

Applications

OTDD (Alvarez-Melis and Fusi, 2020)

- $\mathcal{D}_1: \mu_1 = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i^1, y_i^1)} \in \mathcal{P}(\mathbb{R}^d \times \{1, \dots, C\})$
- $\mathcal{D}_2: \mu_2 = \frac{1}{m} \sum_{j=1}^m \delta_{(x_j^2, y_j^2)} \in \mathcal{P}(\mathbb{R}^d \times \{1, \dots, C'\})$
- A priori: no relation between labels of D_1 and D_2 Question: how to compare datasets D_1 and D_2 ?

OTDD (Alvarez-Melis and Fusi, 2020)

- $\mathcal{D}_1: \mu_1 = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i^1, y_i^1)} \in \mathcal{P}(\mathbb{R}^d \times \{1, \dots, C\})$
- $\mathcal{D}_2: \mu_2 = \frac{1}{m} \sum_{j=1}^m \delta_{(x_j^2, y_j^2)} \in \mathcal{P}(\mathbb{R}^d \times \{1, \dots, C'\})$
- A priori: no relation between labels of D_1 and D_2 Question: how to compare datasets D_1 and D_2 ?

Solution of Alvarez-Melis and Fusi (2020):

- Embed labels in $\mathcal{P}(\mathbb{R}^d)$ as $c\mapsto \nu_c^k=\frac{1}{n_c}\sum_{i=1}^n\delta_{x_i^k}\mathbbm{1}_{\{y_i^k=c\}}$
- Cost: $d((x,y),(x',y'))^2 = ||x-x'||_2^2 + W_2^2(\nu_y,\nu_{y'})$
- Optimal transport distance:

$$OTDD(\mu_1, \mu_2) = \inf_{\gamma \in \Pi(\mu_1, \mu_2)} \int d((x, y), (x', y'))^2 \, \mathrm{d}\gamma((x, y), (x', y')).$$

To reduce computational burden $\rightarrow \nu_y \approx \mathcal{N}(m_y, \Sigma_y)$

• MMD on $\mathcal{P}(\mathbb{R}^d \times \mathbb{R}^2 \times S_2^{++}(\mathbb{R}))$ (Hua et al., 2023)

- MMD on $\mathcal{P}(\mathbb{R}^d \times \mathbb{R}^2 \times S_2^{++}(\mathbb{R}))$ (Hua et al., 2023)
- Wasserstein task embedding (Liu et al., 2025)

Figure: Taken from https://www.vanderbilt.edu/valiant/2024/11/21/ wasserstein-task-embedding-for-measuring-task-similarities/

- MMD on $\mathcal{P}(\mathbb{R}^d \times \mathbb{R}^2 \times S_2^{++}(\mathbb{R}))$ (Hua et al., 2023)
- Wasserstein task embedding (Liu et al., 2025)
- Sliced-Wasserstein on $\mathbb{R}^d \times \mathbb{H}$ (Bonet et al., 2024; Nguyen and Ho, 2024)

- MMD on $\mathcal{P}(\mathbb{R}^d \times \mathbb{R}^2 \times S_2^{++}(\mathbb{R}))$ (Hua et al., 2023)
- Wasserstein task embedding (Liu et al., 2025)
- Sliced-Wasserstein on $\mathbb{R}^d \times \mathbb{H}$ (Bonet et al., 2024; Nguyen and Ho, 2024)

• Sliced-Wasserstein on $\mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d)$ (Nguyen et al., 2025)

Table of Contents

Comparing Datasets

Wasserstein Gradient Flows

Wasserstein over Wasserstein Gradient Flows

Applications

Riemannian Manifolds

Definition

A Riemannian manifold \mathcal{M} of dimension p is a space that behaves locally as a linear space diffeomorphic to \mathbb{R}^p .

Properties:

- To any $x \in \mathcal{M}$, associate a tangent space $T_x \mathcal{M}$ with a smooth inner product $\langle \cdot, \cdot \rangle_x : T_x \mathcal{M} \times T_x \mathcal{M} \to \mathbb{R}.$
- Geodesic between x and y: shortest path minimizing the length $\mathcal L$
- Geodesic distance: $d(x,y) = \inf_{\gamma} \mathcal{L}(\gamma)$
- Exponential map: $\forall x \in \mathcal{M}, \ \exp_x : T_x \mathcal{M} \to \mathcal{M}, \ \text{inverse} \ \log_x : \mathcal{M} \to T_x \mathcal{M}$

Riemannian Manifolds

Definition

A Riemannian manifold \mathcal{M} of dimension p is a space that behaves locally as a linear space diffeomorphic to \mathbb{R}^p .

Properties:

- To any $x \in \mathcal{M}$, associate a tangent space $T_x \mathcal{M}$ with a smooth inner product $\langle \cdot, \cdot \rangle_x : T_x \mathcal{M} \times T_x \mathcal{M} \to \mathbb{R}.$
- Geodesic starting between x and y: $\forall t \in [0,1], \ \gamma(t) = \exp_x \left(t \log_x(y) \right)$
- Geodesic distance: $d(x,y) = \inf_{\gamma} \mathcal{L}(\gamma)$
- Exponential map: $\forall x \in \mathcal{M}, \ \exp_x : T_x \mathcal{M} \to \mathcal{M}, \text{ inverse } \log_x : \mathcal{M} \to T_x \mathcal{M}$

Wasserstein Geometry

Let \mathcal{M} be a (compact connected) Riemannian manifold, $d: \mathcal{M} \times \mathcal{M} \to \mathbb{R}_+$ the geodesic distance.

Definition (Wasserstein distance)

Let $\mu, \nu \in \mathcal{P}_2(\mathcal{M})$ and denote by $\Pi(\mu, \nu)$ the set of coupling between μ, ν . Then, the Wasserstein distance is

$$W_2^2(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int d(x,y)^2 \, \mathrm{d}\gamma(x,y).$$

Properties:

- W_2 distance, $(\mathcal{P}_2(\mathcal{M}), W_2)$: Wasserstein space
- Brenier-McCann's theorem: If $\mu \ll Vol$, then there exists a unique T^{ν}_{μ} s.t.

1.
$$(\mathbf{T}_{\mu}^{\nu})_{\#}\mu = \nu (\mathbf{T}_{\#}\mu(A) = \mu(\mathbf{T}^{-1}(A)) \text{ for all } A \subset \mathcal{M})$$

2. For all $x \in \mathcal{M}$, $\mathbf{T}_{\mu}^{\nu}(x) = \exp_{x} (-\nabla \varphi_{\mu,\nu}(x)), \varphi_{\mu}^{\nu}$ Kantorovich potential
3. $\mathbf{W}_{2}^{2}(\mu,\nu) = \int d(x,\mathbf{T}_{\mu}^{\nu}(x))^{2} d\mu(x) = \int \|\nabla \varphi_{\mu}^{\nu}(x)\|_{x}^{2} d\mu(x)$

Reminder: For $\mathcal{M} = \mathbb{R}^d$, $d(x, y) = ||x - y||_2$, $\exp_x(v) = x + v$, $\log_x(y) = y - x$.

/23

Riemannian Structure of the Wasserstein Space Let $T\mathcal{M} = \{(x, v), x \in \mathcal{M}, v \in T_x\mathcal{M}\}, \pi^{\mathcal{M}}((x, v)) = x, \pi^v((x, v)) = v.$ $\exp_{\mu}^{-1}(\nu) = \{\gamma \in \mathcal{P}_2(T\mathcal{M}), \pi^{\mathcal{M}}_{\#}\gamma = \mu, \exp_{\#}\gamma = \nu, \int ||v||_x^2 d\gamma(x, v) = W_2^2(\mu, \nu)\}$

• Geodesics between $\mu, \nu \in \mathcal{P}_2(\mathcal{M})$, • If $\mu \ll \text{Vol: } \forall t \in [0, 1], \ \mu_t = (\exp_{\text{Id}} \circ (-t\nabla \varphi_{\mu,\nu}))_{\#} \mu$ • If $\lim_{t \to \infty} \det_{\theta} t$

- If log defined μ -a.e.: $\forall t \in [0, 1], \ \mu_t = \left(\exp_{\pi^1}(t \log_{\pi^1} \circ \pi^2)\right)_{\#} \tilde{\gamma}, \ \tilde{\gamma} \in \Pi_o(\mu, \nu)$
- In general: $\forall t \in [0,1], \ \mu_t = \left(\exp_{\pi\mathcal{M}} \circ (t\pi^v)\right)_{\#} \gamma, \ \gamma \in \exp_{\mu}^{-1}(\nu)$ (Gigli, 2011)

For $\mathcal{M} = \mathbb{R}^d$: \circ If $\mu \ll \text{Leb}$, $\mu_t = ((1-t)\text{Id} + t\text{T}_{\mu}^{\nu})_{\#}\mu = (\text{Id} + t(\text{T}_{\mu}^{\nu} - \text{Id}))_{\#}\mu = (\text{Id} - t\nabla\varphi_{\mu,\nu})_{\#}\mu$ \circ In general: $\mu_t = ((1-t)\pi^1 + t\pi^2)_{\#}\gamma = (\pi^1 + t(\pi^2 - \pi^1))_{\#}\gamma$, $\gamma \in \Pi_o(\mu, \nu)$

⁶/23

Riemannian Structure of the Wasserstein Space Let $T\mathcal{M} = \{(x, v), x \in \mathcal{M}, v \in T_x\mathcal{M}\}, \pi^{\mathcal{M}}((x, v)) = x, \pi^v((x, v)) = v.$ $\exp_{\mu}^{-1}(\nu) = \{\gamma \in \mathcal{P}_2(T\mathcal{M}), \pi^{\mathcal{M}}_{\#}\gamma = \mu, \exp_{\#}\gamma = \nu, \int ||v||^2_x d\gamma(x, v) = W_2^2(\mu, \nu)\}$

• Tangent space at $\mu \in \mathcal{P}_2(\mathcal{M})$ (Ambrosio et al., 2008; Erbar, 2010):

$$T_{\mu}\mathcal{P}_{2}(\mathcal{M}) = \overline{\{\nabla\psi, \ \psi \in C_{c}^{\infty}(\mathcal{M})\}} \subset L^{2}(\mu, T\mathcal{M}),$$

where $L^2(\mu, T\mathcal{M}) = \{ f \in \mathcal{M} \to T\mathcal{M}, \int ||f(x)||_2^2 d\mu(x) < \infty \}.$

$$T_{\mu}\mathcal{P}_{2}(\mathbb{R}^{d})\subset L^{2}(\mu)$$
 . μ $\mathcal{P}_{2}(\mathbb{R}^{d})$

Wasserstein Gradient

Definition (Wasserstein gradient)

Let $\mu \in \mathcal{P}_2(\mathcal{M})$. $\nabla_{W_2}\mathcal{F}(\mu) \in L^2(\mu, T\mathcal{M})$ is a Wasserstein gradient of \mathcal{F} at μ if for any $\nu \in \mathcal{P}_2(\mathcal{M})$ and any $\gamma \in \exp_{\mu}^{-1}(\nu)$,

$$\mathcal{F}(\nu) = \mathcal{F}(\mu) + \int \langle \nabla_{\mathbf{W}_2} \mathcal{F}(\mu)(x), v \rangle_x \, \mathrm{d}\gamma(x, v) + o\big(\mathbf{W}_2(\mu, \nu)\big).$$

If such a gradient exists, then we say that $\mathcal F$ is W_2 -differentiable at μ .

Properties:

- There is a unique gradient in $T_{\mu}\mathcal{P}_2(\mathcal{M})$
- Differential are strong (Erbar, 2010, Lemma 3.2), *i.e.* for any $\gamma \in \mathcal{P}(T\mathcal{M})$ s.t. $\pi_{\#}^{\mathcal{M}}\gamma = \mu$, $\exp_{\#}\gamma = \nu$,

$$\mathcal{F}(\nu) = \mathcal{F}(\mu) + \int \langle \nabla_{\mathbf{W}_2} \mathcal{F}(\mu)(x), v \rangle_x \, \mathrm{d}\gamma(x, v) + o\left(\sqrt{\int \|v\|_x^2 \, \mathrm{d}\gamma(x, v)}\right)$$

In particular, for $\gamma = (\mathrm{Id}, \exp \circ T)_{\#} \mu$,

 $\mathcal{F}\big((\exp\circ T)_{\#}\mu\big) = \mathcal{F}(\mu) + \langle \nabla_{W_2}\mathcal{F}(\mu), T \rangle_{L^2(\mu, T\mathcal{M})} + o(\|T\|_{L^2(\mu, T\mathcal{M})})$

Wasserstein Gradient

Example of functionals

• Potential energies $\mathcal{V}(\mu) = \int V d\mu$: For V differentiable and smooth,

 $\nabla_{\mathbf{W}_2} \mathcal{V}(\mu) = \nabla V$

• Interaction energies $\mathcal{W}(\mu) = \iint W(x,y) \, d\mu(x) d\mu(y)$: For W differentiable and smooth,

$$\nabla_{\mathbf{W}_2} \mathcal{W}(\mu)(x) = \int \left(\nabla_1 W(x, \cdot) + \nabla_2 W(\cdot, x) \right) \, \mathrm{d}\mu$$

Wasserstein Gradient

Example of functionals

• Potential energies $\mathcal{V}(\mu) = \int V d\mu$: For V differentiable and smooth,

 $\nabla_{\mathbf{W}_2} \mathcal{V}(\mu) = \nabla V$

• Interaction energies $\mathcal{W}(\mu) = \iint W(x,y) \, d\mu(x) d\mu(y)$: For W differentiable and smooth,

$$abla_{\mathbf{W}_2} \mathcal{W}(\mu)(x) = \int \left(\nabla_1 W(x, \cdot) + \nabla_2 W(\cdot, x) \right) \, \mathrm{d}\mu$$

Example of discrepancy: **Maximum Mean Discrepancy** (MMD) (Arbel et al., 2019)

$$\mathcal{F}(\mu) = \frac{1}{2} \mathrm{MMD}_k^2(\mu, \nu) = \iint k(x, y) \, \mathrm{d}(\mu - \nu)(x) \mathrm{d}(\mu - \nu)(y)$$
$$= \mathcal{V}(\mu) + \mathcal{W}(\mu) + \mathrm{cst},$$

with k positive definite kernel, and:

$$\mathcal{V}(\mu) = \int V \mathrm{d}\mu, \quad V(x) = -\int k(x, y) \mathrm{d}\nu(y), \quad \mathcal{W}(\mu) = \frac{1}{2} \iint k(x, y) \mathrm{d}\mu(x) \mathrm{d}\mu(y)$$

Wasserstein Gradient Flows (Ambrosio et al., 2008)

Wasserstein gradient flow of \mathcal{F} : curve $t \mapsto \mu_t$ satisfying (weakly)

Wasserstein Gradient Flows (Ambrosio et al., 2008)

Wasserstein gradient flow of \mathcal{F} : curve $t \mapsto \mu_t$ satisfying (weakly)

Time discretization of the flow (Riemannian Wasserstein Gradient Descent):

$$\mu_{k+1} = \exp_{\mu_k} \left(-\tau \nabla_{W_2} \mathcal{F}(\mu_k) \right) = \left(\exp_{\mathrm{Id}} (-\tau \nabla_{W_2} \mathcal{F}(\mu_k)) \right)_{\#} \mu_k$$

Particle approximation: $\mu_k^n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i^k}$,

$$\forall i \in \{1, \dots, n\}, \ x_i^{k+1} = \exp_{x_i^k} \left(-\tau \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k^n)(x_i^k) \right)$$

On \mathbb{R}^d : $x_i^{k+1} = x_i^k - \tau \nabla_{W_2} \mathcal{F}(\mu_k^n)(x_i^k)$

Flowing Datasets Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^p \times S_p^{++}(\mathbb{R})), p \leq d.$ Goal: $\min_{\mu} \mathcal{F}(\mu)$

Choice of \mathcal{F} :

- (Alvarez-Melis and Fusi, 2021): $\mathcal{F}(\mu) := \text{OTDD}(\mu, \nu)$
- (Hua et al., 2023): $\mathcal{F}(\mu) := \frac{1}{2} \mathrm{MMD}_k^2(\mu, \nu)$ with kernel

$$k((x,m,\Sigma),(x',m',\Sigma')) = e^{-\|x-x'\|_2^2/h_x} e^{-\|m-m'\|_2^2/h_m} e^{-\|\Sigma-\Sigma'\|_2^2/h_\Sigma}$$

Several strategies:

- Wasserstein gradient flow on features + update the ${\it C}$ Gaussian
- Wasserstein gradient flow on $\mathbb{R}^d \times \mathbb{R}^p \times S_p^{++}(\mathbb{R})$, *i.e.*,

$$\mu_{k+1} = \exp_{\mu_k} \left(-\tau \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k) \right),$$

where $\nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k)((x, m, \Sigma)) \in \mathbb{R}^d \times \mathbb{R}^p \times S_p(\mathbb{R}).$

Drawbacks:

- OTDD costly + non differentiable (require entropic approximation)
- Both require lots of hyperparameters to tune

Contributions

Model datasets as $\mathbb{P} = \frac{1}{C} \sum_{c=1}^{C} \delta_{\nu_c^n} \in \mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$ where $\nu_c^n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i^c} \rightarrow$ require to minimize a functional on $\mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$

Contributions

Model datasets as $\mathbb{P} = \frac{1}{C} \sum_{c=1}^{C} \delta_{\nu_c^n} \in \mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$ where $\nu_c^n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i^c}$ \rightarrow require to minimize a functional on $\mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$

Contributions:

- Endow $\mathcal{P}_2ig(\mathcal{P}_2(\mathbb{R}^d)ig)$ with W_{W_2}
- Study differential structure of $(\mathcal{P}_2(\mathbb{R}^d)), W_{W_2})$
- Develop gradient flows on this space

Contributions

Model datasets as $\mathbb{P} = \frac{1}{C} \sum_{c=1}^{C} \delta_{\nu_c^n} \in \mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$ where $\nu_c^n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i^c}$ \rightarrow require to minimize a functional on $\mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$

Contributions:

- Endow $\mathcal{P}_2ig(\mathcal{P}_2(\mathbb{R}^d)ig)$ with W_{W_2}
- Study differential structure of $(\mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d)), W_{W_2})$
- Develop gradient flows on this space

Applications:

$$\min_{\mathbb{P}\in\mathcal{P}(\mathcal{P}(\mathbb{R}^d))} \mathbb{F}(\mathbb{P})$$

where $\mathbb{F}(\mathbb{P}) = \frac{1}{2} \mathrm{MMD}_{K}^{2}(\mathbb{P}, \mathbb{Q})$ for $\mathbb{Q} \in \mathcal{P}_{2}(\mathcal{P}_{2}(\mathbb{R}^{d}))$ a target dataset, and K a (positive definite kernel) on $\mathcal{P}_{2}(\mathbb{R}^{d})$.

Example

- Gaussian SW kernel: $K(\mu, \nu) = e^{-SW_2^2(\mu, \nu)/h}$ (Kolouri et al., 2016)
- Riesz SW kernel: $K(\mu, \nu) = -SW_2(\mu, \nu)$

Table of Contents

Comparing Datasets

Wasserstein Gradient Flows

Wasserstein over Wasserstein Gradient Flows

Applications

Wasserstein over Wasserstein Distance (WoW)

Definition (WoW distance)

Let $\mathbb{P}, \mathbb{Q} \in \mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$ and denote by $\Pi(\mathbb{P}, \mathbb{Q})$ the set of coupling between \mathbb{P}, \mathbb{Q} . Then, the WoW distance is

$$W^2_{W_2}(\mathbb{P},\mathbb{Q}) = \inf_{\Gamma \in \Pi(\mathbb{P},\mathbb{Q})} \int W^2_2(\mu,\nu) \, d\Gamma(\mu,\nu).$$

Properties:

- W_{W_2} distance, $(\mathcal{P}_2(\mathcal{P}_2(\mathcal{M})), W_{W_2})$: WoW space
- Brenier-McCann's theorem: Let P₀ a reference measure satisfying suitable assumptions (no atom, satisfies an IPP, see (Schiavo, 2020)).
 If P ≪ P₀, then there exists a unique T s.t. T_#P = Q (Emami and Pass, 2025).

Geodesics

Let $\gamma \in \mathcal{P}_2(T\mathcal{M})$. Define $\varphi^{\mathcal{M}}(\gamma) = \pi_{\#}^{\mathcal{M}}\gamma$, $\varphi^{\exp}(\gamma) = \exp_{\#}\gamma$ and $\varphi^v(\gamma) = \pi_{\#}^v\gamma$. For any $\mathbb{P}, \mathbb{Q} \in \mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$,

$$\exp_{\mathbb{P}}^{-1}(\mathbb{Q}) = \{ \mathbb{F} \in \mathcal{P}_2(\mathcal{P}_2(T\mathcal{M})), \ \varphi_{\#}^{\mathcal{M}}\mathbb{F} = \mathbb{P}, \ \varphi_{\#}^{\exp}\mathbb{F} = \mathbb{Q}, \\ \iint \|v\|_x^2 d\gamma(x, v) d\mathbb{F}(\gamma) = W_{W_2}^2(\mathbb{P}, \mathbb{Q}) \}.$$

Properties

- $\Gamma \mapsto (\varphi^{\mathcal{M}}, \varphi^{\exp})_{\#} \Gamma$ is a surjective map from $\exp_{\mathbb{P}}^{-1}(\mathbb{Q})$ to $\Pi_o(\mathbb{P}, \mathbb{Q})$
- If $\mathbb{P} \ll \mathbb{P}_0$, $\mathbb{\Gamma} = (\mu \mapsto (\mathrm{Id}, -\nabla \varphi_{\mu, \mathrm{T}(\mu)})_{\#} \mu)_{\#} \mathbb{P} \in \exp_{\mathbb{P}}^{-1}(\mathbb{Q})$ is unique

Geodesic between \mathbb{P} and \mathbb{Q} :

- If $\mathbb{P} \ll \mathbb{P}_0$, $\forall t \in [0, 1]$, $\mathbb{P}_t = \left(\exp_{\mathrm{Id}} \circ (-t \nabla \varphi_{\mathrm{Id}, \mathrm{T}}) \right)_{\#} \mathbb{P}$
- In general, $\forall t \in [0,1]$, $\mathbb{P}_t = \left(\exp_{\varphi^{\mathcal{M}}} \circ (t\varphi^v) \right)_{\#} \mathbb{F}$

Tangent Space

Definition (Cylinder)

 $\mathcal{F}: \mathcal{P}_2(\mathcal{M}) \to \mathbb{R} \in \operatorname{Cyl}(\mathcal{P}_2(\mathcal{M})) \text{ is a cylinder if there exists } k \ge 0, \ F \in C_c^{\infty}(\mathbb{R}^k) \text{ and } V_1, \ldots, V_k \in C_c^{\infty}(\mathcal{M}) \text{ such that, for all } \mu \in \mathcal{P}_2(\mathcal{M}),$

$$\mathcal{F}(\mu) = F\left(\int V_1 \mathrm{d}\mu, \dots, \int V_k \mathrm{d}\mu\right).$$

Definition (Tangent space at $\mathbb{P} \in \mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$)

$$T_{\mathbb{P}}\mathcal{P}_{2}(\mathcal{P}_{2}(\mathcal{M})) = \overline{\left\{\nabla_{W_{2}}\varphi, \ \varphi \in \operatorname{Cyl}(\mathcal{P}_{2}(\mathcal{M}))\right\}}^{L^{2}(\mathbb{P})}$$

Let $(\mathbb{P}_t)_{t\in I}$ be an absolutely continuous curve on $\mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$. Then, for a.e. $t \in I$, there exists $v_t \in T_{\mathbb{P}_t}\mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$ such that $\|v_t\|_{L^2(\mathbb{P}_t,T\mathcal{P}_2(\mathcal{M}))} \leq |\mathbb{P}'|(t)$ and for all $\varphi \in \operatorname{Cyl}(I \times \mathcal{P}_2(\mathcal{M}))$,

$$\iint \left(\partial_t \varphi_t(\mu) + \langle \nabla_{\mathbf{W}_2} \varphi_t(\mu), v_t(\mu) \rangle_{L^2(\mu)} \right) \, \mathrm{d}\mathbb{P}_t(\mu) \mathrm{d}t = 0.$$

WoW Gradient

Definition (WoW gradient)

Let $\mathbb{P} \in \mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$. $\nabla_{W_{W_2}}\mathbb{F}(\mathbb{P}) \in L^2(\mathbb{P}, T\mathcal{P}_2(\mathcal{M}))$ is a WoW gradient of \mathbb{F} at \mathbb{P} if for any $\mathbb{Q} \in \mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$ and any $\mathbb{F} \in \exp_{\mathbb{P}}^{-1}(\mathbb{Q})$,

$$\mathbb{F}(\mathbb{Q}) = \mathbb{F}(\mathbb{P}) + \iint \langle \nabla_{\mathrm{W}_{2}} \mathbb{F}(\mathbb{P})(\pi_{\#}^{\mathcal{M}}\gamma)(x), v \rangle_{x} \, \mathrm{d}\gamma(x, v) \mathbb{F}(\gamma) + o\big(\mathrm{W}_{\mathrm{W}_{2}}(\mathbb{P}, \mathbb{Q})\big).$$

If such a gradient exists, then we say that $\mathbb F$ is $W_{W_2}\text{-differentiable}$ at $\mathbb P.$

Properties:

- If $\mathbb{P} \ll \mathbb{P}_0$, then there is at most one element in $\partial \mathbb{F}(\mathbb{P}) \cap T_{\mathbb{P}} \mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$
- Under additional assumptions on \mathbb{P} and \mathcal{M} , existence of $\xi \in \partial \mathbb{F}(\mathbb{P}) \cap T_{\mathbb{P}}\mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$
- If $\mathbb{P} \ll \mathbb{P}_0$ and $\xi \in \partial \mathbb{F}(\mathbb{P}) \cap T_{\mathbb{P}}\mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$. Then ξ is a strong subdifferential of \mathbb{F} at \mathbb{P} , *i.e.*, for $\Psi \in L^2(\mathbb{P})$, $\mathbb{F} = (\mathrm{Id}, \Psi)_{\#}\mathbb{P}$ and $\mathbb{Q} := \varphi_{\#}^{\exp}\mathbb{F}$,

$$\mathbb{F}(\mathbb{Q}) \ge \mathbb{F}(\mathbb{P}) + \int \langle \xi(\mu), \Psi(\mu) \rangle_{L^2(\mu)} \mathrm{d}\mathbb{P}(\mu) + o(\|\Psi\|_{L^2(\mathbb{P})}).$$

/23

WoW Gradient

Example of functionals

• Potential energies $\mathbb{V}(\mathbb{P}) = \int \mathcal{F}(\mu) d\mathbb{P}(\mu)$: For $\mathcal{F} : \mathcal{P}_2(\mathcal{M}) \to \mathbb{R}$ differentiable and smooth,

$$\nabla_{W_{W_2}} \mathbb{V}(\mathbb{P}) = \nabla_{W_2} \mathcal{F}$$

• Interaction energies $\mathbb{W}(\mathbb{P}) = \iint \mathcal{W}(\mu, \nu) \, d\mathbb{P}(\mu) d\mathbb{P}(\nu)$: For \mathcal{W} differentiable and smooth,

$$\nabla_{W_{W_2}} \mathbb{W}(\mathbb{P})(\mu) = \int \left(\nabla_1 \mathcal{W}(\mu, \cdot) + \nabla_2 \mathcal{W}(\cdot, \mu) \right) \, \mathrm{d}\mathbb{F}$$

Conjecture:

$$\nabla_{\mathrm{W}_{W_2}}\mathbb{F}(\mathbb{P}) = \nabla_{\mathrm{W}_2}\frac{\delta\mathbb{F}}{\delta\mathbb{P}}(\mathbb{P}),$$

where the first variation $\frac{\delta \mathbb{F}}{\delta \mathbb{P}}(\mathbb{P}) : \mathcal{P}_2(\mathcal{M}) \to \mathbb{R}$ at \mathbb{P} is defined as the unique function (up to a constant) satisfying

$$\lim_{\varepsilon \to 0} \frac{\mathbb{F}(\mathbb{P} + \varepsilon \chi) - \mathbb{F}(\mathbb{P})}{\varepsilon} = \int \frac{\delta \mathbb{F}}{\delta \mathbb{P}}(\mathbb{P}) \, \mathrm{d}\chi,$$

where $\int d\chi = 0$ and $\mathbb{P} + \varepsilon \chi \in \mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))$ for ε small.

.

WoW Gradient Flow

Discretizations:

• JKO scheme (Jordan et al., 1998):

$$\mathbb{P}_{k+1} = \operatorname*{argmin}_{\mathbb{P} \in \mathcal{P}_2(\mathcal{P}_2(\mathcal{M}))} \frac{1}{2\tau} \mathrm{W}_{\mathrm{W}_2}(\mathbb{P}, \mathbb{P}_k)^2 + \mathbb{F}(\mathbb{P})$$

 \rightarrow converges to the WoW gradient flow when $\tau\rightarrow 0.$

• Forward scheme:

$$\forall k \ge 0, \ \mathbb{P}_{k+1} = \exp_{\mathbb{P}_k} \left(-\tau \nabla_{\mathrm{W}_{\mathrm{W}_2}} \mathbb{F}(\mathbb{P}_k) \right)$$

At the distribution level: $\mu_{k+1} = \exp_{\mu_k} \left(-\tau \nabla_{W_{W_2}} \mathbb{F}(\mathbb{P}_k)(\mu_k) \right)$ where $\mu_k \sim \mathbb{P}_k$. In practice: For $\mathbb{P}_k = \frac{1}{C} \sum_{c=1}^C \delta_{\mu_k^{c,n}}$ with $\mu_k^{c,n} = \frac{1}{n} \sum_{i=1}^n \delta_{x_k^{i,c}}$:

$$\forall k \ge 0, i, c, \ x_{k+1}^{i,c} = \exp_{x_k^{i,c}} \left(-\tau \nabla_{\mathbf{W}_{\mathbf{W}_2}} \mathbb{F}(\mathbb{P}_k)(\mu_k^{c,n})(x_k^{i,c}) \right).$$

Table of Contents

Comparing Datasets

Wasserstein Gradient Flows

Wasserstein over Wasserstein Gradient Flows

Applications

Synthetic Data

Goal: $\min_{\mathbb{P}} \mathbb{F}(\mathbb{P}) = \frac{1}{2} \text{MMD}_{K}^{2}(\mathbb{P}, \mathbb{Q})$, where $\mathbb{Q} = \frac{1}{3} \sum_{c=1}^{3} \delta_{\nu_{c}^{n}}$, ν_{c}^{n} ring.

Kernels considered:

- Gaussian SW kernel: $K(\mu,\nu) = e^{-SW_2^2(\mu,\nu)/(2h)}$ (h=0.05)
- Riesz SW kernel: $K(\mu, \nu) = -SW_2(\mu, \nu)$
- Riesz kernel on \mathbb{R}^d : $k(x,y) = -\|x-y\|_2$

Domain Adaptation

Setting:

- 1. Pretrain a classifier on MNIST $\mathbb Q$
- 2. Flow other dataset to MNIST by minimizing $\mathbb{F}(\mathbb{P}) = \frac{1}{2} \mathrm{MMD}_K^2(\mathbb{P},\mathbb{Q})$ with $K(\mu,\nu) = -\mathrm{SW}_2(\mu,\nu)$
- 3. Measure accuracy on flowed data

 \rightarrow reach 100% accuracy

Domain Adaptation

Setting:

- 1. Pretrain a classifier on MNIST $\mathbb Q$
- 2. Flow other dataset to MNIST by minimizing $\mathbb{F}(\mathbb{P})=\frac{1}{2}\mathrm{MMD}_K^2(\mathbb{P},\mathbb{Q})$ with $K(\mu,\nu)=-\mathrm{SW}_2(\mu,\nu)$
- 3. Measure accuracy on flowed data

Dataset Distillation (Wang et al., 2018)

Let $\mathcal{A}^{\omega} : \mathbb{R}^d \to \mathbb{R}^d$ be some data augmentation (*e.g.* rotation, cropping...), $\psi^{\theta} : \mathbb{R}^d \to \mathbb{R}^{d'}$ with $d' \ll d$ a randomly initialized neural network used to embed the data, $\varphi^{\theta,\omega}(\mu) = \psi^{\theta}_{\#} \mathcal{A}^{\omega}_{\#} \mu$. **Goal:** synthesize big dataset $\mathbb{Q} = \frac{1}{C} \sum_{c=1}^{C} \delta_{\nu_c}$

• Distribution Matching (DM) (Zhao and Bilen, 2023):

$$\mathcal{F}((\mu_c)_c) = \mathbb{E}_{\theta,\omega} \left[\sum_{c=1}^C \mathrm{MMD}_k^2 (\psi_{\#}^{\theta} \mathcal{A}_{\#}^{\omega} \mu_c, \psi_{\#}^{\theta} \mathcal{A}_{\#}^{\omega} \nu_c) \right],$$

with linear kernel $k(x,y) = \langle x,y \rangle$.

• Ours:

$$\tilde{\mathbb{F}}(\mathbb{P}) = \mathbb{E}_{\theta, \omega} \left[\mathrm{MMD}_{K}^{2}(\varphi_{\#}^{\theta, \omega}\mathbb{P}, \varphi_{\#}^{\theta, \omega}\mathbb{Q}) \right],$$

with $K(\mu,\nu) = -SW_2(\mu,\nu)$, $\mathbb{P} = \frac{1}{C} \sum_{c=1}^C \delta_{\mu_c^k}$.

Results Dataset Distillation

Table: Accuracy of the classifier trained on synthetic datasets with $k \in \{1, 10, 50\}$ synthetic images by class.

Dataset	k	$\psi^{\theta} = A^{\omega} = Id$		$\psi^{\theta} = \text{Id}$		$\mathcal{A}^w = \mathrm{Id}$		$A^w + \psi^\theta$		Baselines	
		DM	MMDSW	DM	MMDSW	DM	MMDSW	DM	MMDSW	Random	Full data
	1	$61.1_{\pm 6.5}$	$66.5_{\pm 5.5}$	-	66.8 _{±5.3}	$87.8_{\pm 0.6}$	$60.3_{\pm 3.4}$	$87.7_{\pm 0.5}$	$60.9_{\pm 3.3}$	$55.8_{\pm 2.0}$	
MNIST	10	$88.2_{\pm 2.8}$	$93.2_{\pm 0.7}$	$88.7_{\pm 3.3}$	$93.8_{\pm 0.7}$	97.0 ±0.1	$96.4_{\pm 0.2}$	$97.0_{\pm 0.1}$	$96.4_{\pm 0.3}$	$92.2_{\pm 1.1}$	99.4
	50	$95.9_{\pm 0.9}$	$97.0_{\pm 0.2}$	$95.3_{\pm 1.4}$	$97.5_{\pm 0.1}$	$98.4_{\pm 0.1}$	$\textbf{98.4}_{\pm 0.1}$	$\textbf{98.4}_{\pm 0.1}$	$\textbf{98.4}_{\pm 0.1}$	$97.6_{\pm 0.2}$	
	1	$54.4_{\pm 3.2}$	$60.0_{\pm 4.1}$	-	$60.6_{\pm 3.6}$	$58.7_{\pm 0.4}$	$60.9_{\pm 2.6}$	$58.7_{\pm 0.5}$	$60.8_{\pm 2.2}$	$49.0_{\pm 7.5}$	
FMNIST	10	$74.6_{\pm 1.0}$	76.7 ±1.0	$74.7_{\pm 0.8}$	76.6 _{±1.1}	$81.2_{\pm 2.3}$	$78.0_{\pm 0.9}$	$82.5_{\pm 0.3}$	78.9 ± 1.2	$75.3_{\pm 0.7}$	92.4
	50	$81.3_{\pm 0.5}$	$84.2_{\pm 0.1}$	$81.4_{\pm 1.0}$	$85.0_{\pm 0.2}$	$87.6_{\pm 0.2}$	$\textbf{87.6}_{\pm 0.2}$	$87.5_{\pm 0.1}$	$87.6_{\pm 0.2}$	$83.2_{\pm 0.2}$	

Transfer Learning

Goal: augment small dataset $\mathbb{Q} = \frac{1}{C} \sum_{c=1}^{C} \delta_{\nu_{c}^{k}}$ with k small

Table: Accuracy of classifier on augmented datasets for $k \in \{1, 10, 10, 100\}$. M refers to MNIST, F to Fashion MNIST, K to KMNIST and U to USPS.

Dataset	k	Train on $\mathbb Q$	MMDSW	OTDD	(Hua et al., 2023)
	1	$26.0_{\pm 5.3}$	$\textbf{40.5}_{\pm 4.7}$	$30.5_{\pm 4.2}$	$36.4_{\pm 3.3}$
M to E	5	$38.5_{\pm 6.7}$	$61.5_{\pm 4.6}$	$59.7_{\pm 1.8}$	62.7 ±1.1
IVI LO F	10	$53.9_{\pm 7.9}$	$65.4_{\pm 1.5}$	$64.0_{\pm 1.4}$	66.2 $_{\pm 1.0}$
	100	$71.1_{\pm 1.5}$	$\textbf{74.7}_{\pm 0.8}$	-	$73.5_{\pm 0.7}$
	1	$18.4_{\pm 3.1}$	$\textbf{20.9}_{\pm 2.0}$	$18.8_{\pm 2.1}$	$19.4_{\pm 1.9}$
M to K	5	$25.9_{\pm 4.0}$	$37.4_{\pm 2.2}$	$31.3_{\pm 1.4}$	$39.0_{\pm 1.0}$
IVI LO IN	10	$30.9_{\pm 4.6}$	$44.7_{\pm 1.8}$	$34.1_{\pm 0.9}$	$44.1_{\pm 1.2}$
	100	$60.1_{\pm 1.1}$	$\textbf{66.8}_{\pm 0.8}$	$66.3_{\pm 0.9}$	$62.4_{\pm 1.2}$
	1	$32.4_{\pm 7.9}$	$37.4_{\pm 6.1}$	$\textbf{39.5}_{\pm7.9}$	$35.0_{\pm 5.6}$
M to H	5	$51.4_{\pm 9.8}$	$73.0_{\pm 1.0}$	73.3 $_{\pm 1.4}$	$69.6_{\pm 1.3}$
	10	$60.3_{\pm 10.1}$	77.2 $_{\pm 1.2}$	$72.7_{\pm 2.7}$	$75.6_{\pm 1.2}$
	100	$87.5_{\pm 0.7}$	$\textbf{89.7}_{\pm 0.4}$	-	$88.1_{\pm 0.6}$

Conclusion

Conclusion:

- Differential structure over the Wasserstein over Wasserstein Space
- Wasserstein over Wasserstein Gradient Flows
- Implementation on the MMD
- Application to Dataset Distillation and Transfer Learning

Perspectives:

- Use other positive definite kernels for the MMD
- Minimize other functionals
- Theoretical convergence

Conclusion

Conclusion:

- Differential structure over the Wasserstein over Wasserstein Space
- Wasserstein over Wasserstein Gradient Flows
- Implementation on the MMD
- Application to Dataset Distillation and Transfer Learning

Perspectives:

- Use other positive definite kernels for the MMD
- Minimize other functionals
- Theoretical convergence

Thank you for your attention!

References I

- David Alvarez-Melis and Nicolo Fusi. Geometric Dataset Distances via Optimal Transport. *Advances in Neural Information Processing Systems*, 33: 21428–21439, 2020.
- David Alvarez-Melis and Nicolò Fusi. Dataset Dynamics via Gradient Flows in Probability Space. In *International conference on machine learning*, pages 219–230. PMLR, 2021.
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient Flows: in Metric Spaces and in the Space of Probability Measures.* Springer Science & Business Media, 2008.
- Michael Arbel, Anna Korba, Adil Salim, and Arthur Gretton. Maximum Mean Discrepancy Gradient Flow. *Advances in Neural Information Processing Systems*, 32, 2019.
- Clément Bonet, Lucas Drumetz, and Nicolas Courty. Sliced-Wasserstein Distances and Flows on Cartan-Hadamard Manifolds. *arXiv preprint arXiv:2403.06560*, 2024.
- Jannis Chemseddine, Paul Hagemann, Gabriele Steidl, and Christian Wald. Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching. *arXiv preprint arXiv:2403.18705*, 2024.

References II

- Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain adaptation. *IEEE transactions on pattern analysis and machine intelligence*, 39(9):1853–1865, 2016.
- Pedram Emami and Brendan Pass. Optimal transport with optimal transport cost: the Monge–Kantorovich problem on Wasserstein spaces. *Calculus of Variations and Partial Differential Equations*, 64(2):43, 2025.
- Matthias Erbar. The heat equation on manifolds as a gradient flow in the wasserstein space. In *Annales de l'IHP Probabilités et statistiques*, volume 46, pages 1–23, 2010.
- Nicola Gigli. On the inverse implication of Brenier-McCann theorems and the structure of $(P_2(M), W_2)$. Methods and Applications of Analysis, 18(2): 127–158, 2011.
- Xinru Hua, Truyen Nguyen, Tam Le, Jose Blanchet, and Viet Anh Nguyen. Dynamic Flows on Curved Space Generated by Labeled Data. In Edith Elkind, editor, *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23*, pages 3803–3811. International Joint Conferences on Artificial Intelligence Organization, 8 2023. Main Track.

References III

- Richard Jordan, David Kinderlehrer, and Felix Otto. The Variational Formulation of the Fokker–Planck Equation. *SIAM journal on mathematical analysis*, 29(1): 1–17, 1998.
- Soheil Kolouri, Yang Zou, and Gustavo K Rohde. Sliced Wasserstein Kernels for Probability Distributions. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 5258–5267, 2016.
- Xinran Liu, Yikun Bai, Yuzhe Lu, Andrea Soltoggio, and Soheil Kolouri. Wasserstein Task Embedding for Measuring Task Similarities. *Neural Networks*, 181:106796, 2025.
- Khai Nguyen and Nhat Ho. Hierarchical Hybrid Sliced Wasserstein: A Scalable Metric for Heterogeneous Joint Distributions. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- Khai Nguyen, Hai Nguyen, Tuan Pham, and Nhat Ho. Lightspeed geometric dataset distance via sliced optimal transport, 2025.
- Lorenzo Dello Schiavo. A Rademacher-type theorem on L2-Wasserstein spaces over closed Riemannian manifolds. *Journal of Functional Analysis*, 278(6): 108397, 2020.

- Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset Distillation. *arXiv preprint arXiv:1811.10959*, 2018.
- Bo Zhao and Hakan Bilen. Dataset Condensation with Distribution Matching. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 6514–6523, 2023.