Mirror and Preconditioned Gradient Descent in Wasserstein Space

Clément Bonet¹

Joint work with Théo Uscidda¹, Adam David², Pierre-Cyril Aubin-Frankowski³, Anna Korba¹

¹ENSAE, CREST, Institut Polytechnique de Paris ²TU Berlin, ³TU Wien

MokaMeeting 20/12/2024

Motivations

Let $\mathcal{P}_2(\mathbb{R}^d) = \{ \mu \in \mathcal{P}(\mathbb{R}^d), \int ||x||_2^2 d\mu(x) < \infty \}, \mathcal{F} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}.$ Goal:

$$\min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \mathcal{F}(\mu)$$

Applications:

- Sampling from $u \propto e^{-V}$ (Wibisono, 2018)
- Generative modeling
- Learning neural networks (Mei et al., 2018; Chizat and Bach, 2018)
- Modeling dynamic of populations of cells (Schiebinger et al., 2019)

Example of functionals

- Free energies: $\mathcal{F}(\mu) = \int V d\mu + \iint W(x, y) d\mu(x) d\mu(y) + \mathcal{H}(\mu)$ where $\mathcal{H}(\mu) = \int \log (\mu(x)) d\mu(x)$ for $\mu \ll \text{Leb}$
- $\mathcal{F}(\mu) = \mathrm{KL}(\mu || \nu) = \int V \mathrm{d}\mu + \mathcal{H}(\mu) \ (+C)$ for sampling from $\nu \propto e^{-V(x)}$
- $\mathcal{F}(\mu) = D(\mu, \nu)$ for sampling from ν

Table of Contents

Detour by \mathbb{R}^d

Wasserstein Gradient Flows

Mirror Descent

Preconditioned Gradient Descent

Applications

Gradient Descent on \mathbb{R}^d

Let $f : \mathbb{R}^d \to \mathbb{R}$.

Goal: $\min_{x \in \mathbb{R}^d} f(x)$ via gradient flow

$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = -\nabla f(x_t), \quad x_0 = x_0$$

Gradient Descent on \mathbb{R}^d Let $f : \mathbb{R}^d \to \mathbb{R}$.

Goal: $\min_{x \in \mathbb{R}^d} f(x)$ via gradient flow

$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = -\nabla f(x_t), \quad x_0 = x_0$$

Main algorithm: Gradient Descent (GD)

 $\begin{aligned} \forall k \ge 0, \ x_{k+1} &= x_k - \tau \nabla f(x_k) & \text{From (Bach, 2020)} \\ &= \operatorname*{argmin}_{x \in \mathbb{R}^d} \ \frac{1}{2} \|x - x_k\|_2^2 + \tau \langle \nabla f(x_k), x - x_k \rangle \end{aligned}$

2/24

Gradient Descent on \mathbb{R}^d Let $f : \mathbb{R}^d \to \mathbb{R}$.

Goal: $\min_{x \in \mathbb{R}^d} f(x)$ via gradient flow

$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = -\nabla f(x_t), \quad x_0 = x_0$$

Main algorithm: Gradient Descent (GD)

 $\forall k \ge 0, \ x_{k+1} = x_k - \tau \nabla f(x_k)$ From (Bach, 2020) $= \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|x - x_k\|_2^2 + \tau \langle \nabla f(x_k), x - x_k \rangle$

Convergence Analysis

- $f \beta$ -smooth $\implies f(x_{k+1}) \le f(x_k) \frac{1}{2\beta} \|\nabla f(x_k)\|_2^2 = f(x_k) \frac{\beta}{2} \|x_{k+1} x_k\|_2^2$
- $f \beta$ -smooth and α -convex $\implies f(x_k) f(x^*) \le \frac{\beta \alpha}{2k} \|x_0 x^*\|_2^2$

Reminder:

• $f \beta$ -smooth $\iff \forall x, y \in \mathbb{R}^d, \ f(x) - f(y) - \langle \nabla f(y), x - y \rangle \leq \frac{\beta}{2} ||x - y||_2^2$

•
$$f \alpha$$
-convex $\iff f - \alpha \frac{\|\cdot\|_2^2}{2}$ convex

²/24

Mirror Descent on \mathbb{R}^d (Beck and Teboulle, 2003)

If f not $\beta\text{-smooth:}$ no guarantees for $\mathsf{GD}\to\mathsf{change}$ geometry

Mirror Descent on \mathbb{R}^d (Beck and Teboulle, 2003)

If f not $\beta\text{-smooth:}$ no guarantees for $\mathsf{GD}\to\mathsf{change}$ geometry

Definition (Bregman Divergence)

Let $\phi: \mathbb{R}^d \to \mathbb{R}$ be strictly convex, then the Bregman divergence is defined as

$$\forall x, y \in \mathbb{R}^d, \ \mathrm{d}_{\phi}(x, y) = \phi(x) - \phi(y) - \langle \nabla \phi(y), x - y \rangle$$

Mirror Descent algorithm:

$$\forall k \ge 0, \ x_{k+1} = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \ d_{\phi}(x, x_k) + \tau \langle \nabla f(x_k), x - x_k \rangle$$
$$= \nabla \phi^* \big(\nabla \phi(x_k) - \tau \nabla f(x_k) \big).$$

Remark: For $\phi(x) = \frac{1}{2} ||x||_2^2$, MD = GD and $d_{\phi}(x, y) = \frac{1}{2} ||x - y||_2^2$

Mirror Descent on \mathbb{R}^d (Beck and Teboulle, 2003)

If f not $\beta\text{-smooth:}$ no guarantees for $\mathsf{GD}\to\mathsf{change}$ geometry

Definition (Bregman Divergence)

Let $\phi: \mathbb{R}^d \to \mathbb{R}$ be strictly convex, then the Bregman divergence is defined as

$$\forall x, y \in \mathbb{R}^d, \ \mathrm{d}_{\phi}(x, y) = \phi(x) - \phi(y) - \langle \nabla \phi(y), x - y \rangle.$$

Mirror Descent algorithm:

$$\begin{aligned} \forall k \ge 0, \ x_{k+1} &= \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \ d_{\phi}(x, x_k) + \tau \langle \nabla f(x_k), x - x_k \rangle \\ &= \nabla \phi^* \big(\nabla \phi(x_k) - \tau \nabla f(x_k) \big). \end{aligned}$$

Remark: For $\phi(x) = \frac{1}{2} ||x||_2^2$, MD = GD and $d_{\phi}(x, y) = \frac{1}{2} ||x - y||_2^2$

Convergence analysis (Lu et al., 2018)

- $f \beta$ -smooth relative to ϕ , *i.e.* $d_f(x, y) \leq \beta d_{\phi}(x, y)$ (equivalently $\beta \phi f$ convex) $\implies f(x_{k+1}) \leq f(x_k) - \beta d_{\phi}(x_k, x_{k+1})$
- $f \ \beta$ -smooth and α -convex relative to ϕ , *i.e.* $\alpha d_{\phi}(x, y) \leq d_{f}(x, y)$ (equivalently $f \alpha \phi$ convex) $\implies f(x_{k}) f(x^{*}) \leq \frac{\beta \alpha}{k} d_{\phi}(x^{*}, x_{0})$

Proof of convergence

Lemma (Three-Point Property)

Let $g: \mathbb{R}^d \to \mathbb{R}$ be a convex function, $\phi: \mathbb{R}^d \to \mathbb{R}$ strictly convex. Let $z_0 \in \mathbb{R}^d$ and $z^* = \operatorname{argmin}_z \, \mathrm{d}_{\phi}(z, z_0) + g(z)$. Then, for all $z \in \mathbb{R}^d$,

 $g(z) + d_{\phi}(z, z_0) \ge g(z^*) + d_{\phi}(z^*, z_0) + d_{\phi}(z, z^*).$

Proof of convergence

Lemma (Three-Point Property)

Let $g: \mathbb{R}^d \to \mathbb{R}$ be a convex function, $\phi: \mathbb{R}^d \to \mathbb{R}$ strictly convex. Let $z_0 \in \mathbb{R}^d$ and $z^* = \operatorname{argmin}_z \, \mathrm{d}_{\phi}(z, z_0) + g(z)$. Then, for all $z \in \mathbb{R}^d$,

 $g(z) + d_{\phi}(z, z_0) \ge g(z^*) + d_{\phi}(z^*, z_0) + d_{\phi}(z, z^*).$

Using smoothness, Three-point property on $g(x) = \frac{1}{\beta} \langle \nabla f(x_k), x - x_k \rangle$ and strong convexity we get for all $x \in \mathbb{R}^d$,

$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \beta \mathrm{d}_{\phi}(x_{k+1}, x_k)$$

$$\leq f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \beta \mathrm{d}_{\phi}(x, x_k) - \beta \mathrm{d}_{\phi}(x, x_{k+1})$$

$$\leq f(x) + (\beta - \alpha) \mathrm{d}_{\phi}(x, x_k) - \beta \mathrm{d}_{\phi}(x, x_{k+1}),$$

By induction and using the monotonicity of f, and taking $x = x^*$, we get the desired rates: $f(x_k) - f(x) \leq \frac{\alpha d_{\phi}(x,x_0)}{\left(1 + \frac{\alpha}{\beta - \alpha}\right)^k - 1} \leq \frac{\beta - \alpha}{k} d_{\phi}(x,x_0).$

4/24

Proof of convergence

Lemma (Three-Point Property)

Let $g: \mathbb{R}^d \to \mathbb{R}$ be a convex function, $\phi: \mathbb{R}^d \to \mathbb{R}$ strictly convex. Let $z_0 \in \mathbb{R}^d$ and $z^* = \operatorname{argmin}_z \, \mathrm{d}_{\phi}(z, z_0) + g(z)$. Then, for all $z \in \mathbb{R}^d$,

 $g(z) + d_{\phi}(z, z_0) \ge g(z^*) + d_{\phi}(z^*, z_0) + d_{\phi}(z, z^*).$

Using smoothness, Three-point property on $g(x) = \frac{1}{\beta} \langle \nabla f(x_k), x - x_k \rangle$ and strong convexity we get for all $x \in \mathbb{R}^d$,

$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \beta \mathrm{d}_{\phi}(x_{k+1}, x_k)$$

$$\leq f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \beta \mathrm{d}_{\phi}(x, x_k) - \beta \mathrm{d}_{\phi}(x, x_{k+1})$$

$$\leq f(x) + (\beta - \alpha) \mathrm{d}_{\phi}(x, x_k) - \beta \mathrm{d}_{\phi}(x, x_{k+1}),$$

By induction and using the monotonicity of f, and taking $x = x^*$, we get the desired rates: $f(x_k) - f(x) \leq \frac{\alpha d_{\phi}(x,x_0)}{\left(1 + \frac{\alpha}{\beta - \alpha}\right)^k - 1} \leq \frac{\beta - \alpha}{k} d_{\phi}(x,x_0)$. **Remarks**: (1) the proof works replacing β with $1/\tau$ if $\tau \leq 1/\beta$, (2) we need smoothness and convexity in specific directions.

/24

Preconditioned Gradient Descent (Maddison et al., 2021)

Let $h : \mathbb{R}^d \to \mathbb{R}$ strictly convex, $g : \mathbb{R}^d \to \mathbb{R}$.

Preconditioned Gradient Descent scheme:

$$\begin{aligned} \forall k \ge 0, \ y_{k+1} &= y_k - \tau \nabla h^* \left(\nabla g(y_k) \right) \\ &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \ h \left(\frac{y_k - y}{\tau} \right) \tau + \langle \nabla g(y_k), y - y_k \rangle \end{aligned}$$

Preconditioned Gradient Descent (Maddison et al., 2021)

Let $h: \mathbb{R}^d \to \mathbb{R}$ strictly convex, $g: \mathbb{R}^d \to \mathbb{R}$.

Preconditioned Gradient Descent scheme:

$$\begin{aligned} \forall k \ge 0, \ y_{k+1} &= y_k - \tau \nabla h^* \left(\nabla g(y_k) \right) \\ &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \ h \left(\frac{y_k - y}{\tau} \right) \tau + \langle \nabla g(y_k), y - y_k \rangle \end{aligned}$$

Closely related to MD (Kim et al., 2023) as for $g=\phi^*, \ h^*=f, \ y=\nabla\phi(x),$

$$\nabla \phi(x_{k+1}) = \nabla \phi(x_k) - \tau \nabla f(x_k) \iff x_{k+1} = \nabla \phi^* \big(\nabla \phi(x_k) - \tau \nabla f(x_k) \big).$$

Preconditioned Gradient Descent (Maddison et al., 2021)

Let $h : \mathbb{R}^d \to \mathbb{R}$ strictly convex, $g : \mathbb{R}^d \to \mathbb{R}$.

Preconditioned Gradient Descent scheme:

$$\forall k \ge 0, \ y_{k+1} = y_k - \tau \nabla h^* \left(\nabla g(y_k) \right)$$

= argmin $y \in \mathbb{R}^d$ $h\left(\frac{y_k - y}{\tau}\right) \tau + \langle \nabla g(y_k), y - y_k \rangle$

Closely related to MD (Kim et al., 2023) as for $g=\phi^*$, $h^*=f$, $y=\nabla\phi(x)$,

$$\nabla \phi(x_{k+1}) = \nabla \phi(x_k) - \tau \nabla f(x_k) \iff x_{k+1} = \nabla \phi^* \big(\nabla \phi(x_k) - \tau \nabla f(x_k) \big).$$

Convergence analysis (Maddison et al., 2021)

• $h^* \beta$ -smooth relative to $g^* \implies h^* \big(\nabla g(y_{k+1}) \big) \le h^* \big(\nabla g(y_k) \big) - \beta \mathrm{d}_g(y_{k+1}, y_k)$

• $h^* \beta$ -smooth and α -convex relative to g^* $\implies \forall k \ge 1, \ h^* (\nabla g(y_k)) - h^*(0) \le \frac{\alpha - \beta}{k} (g(y_0) - g(y^*))$ $\implies \forall k \ge 0, \ g(y_k) - g(y^*) \le (1 - \alpha/\beta)^k (g(y_0) - g(y^*))$

Table of Contents

Detour by \mathbb{R}^d

Wasserstein Gradient Flows

Mirror Descent

Preconditioned Gradient Descent

Applications

Wasserstein Geometry

Definition (Wasserstein distance)

Let $\mu,\nu\in\mathcal{P}_2(\mathbb{R}^d)$ and denote by $\Pi(\mu,\nu)$ the set of coupling between $\mu,\nu.$ Then, the Wasserstein distance is

$$W_2^2(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int ||x - y||_2^2 \, d\gamma(x,y).$$

Properties:

- W_2 distance, $(\mathcal{P}_2(\mathbb{R}^d), W_2)$: Wasserstein space
- Brenier's theorem: If $\mu \ll \text{Leb}$, then there exists a unique T^{ν}_{μ} such that
- 1. $(T^{\nu}_{\mu})_{\#}\mu = \nu (T_{\#}\mu(A) = \mu(T^{-1}(A)) \text{ for all } A \subset \mathbb{R}^d)$
- 2. $W_2^2(\mu,\nu) = \int ||x T_{\mu}^{\nu}(x)||_2^2 d\mu(x) = ||Id T_{\mu}^{\nu}||_{L^2(\mu)}^2$
- Riemannian structure

Riemannian Structure of the Wasserstein Space

• Geodesics between $\mu \ll \text{Leb}$ and $\nu \in \mathcal{P}_2(\mathbb{R}^d)$:

$$\forall t \in [0,1], \ \mu_t = \left((1-t) \mathrm{Id} + t \mathrm{T}^{\nu}_{\mu} \right)_{\#} \mu$$

Riemannian Structure of the Wasserstein Space

• Geodesics between $\mu \ll \text{Leb}$ and $\nu \in \mathcal{P}_2(\mathbb{R}^d)$:

$$\forall t \in [0,1], \ \mu_t = \left((1-t) \mathrm{Id} + t \mathrm{T}^{\nu}_{\mu} \right)_{\#} \mu$$

• Tangent space at $\mu \in \mathcal{P}_2(\mathbb{R}^d)$ (Ambrosio et al., 2005):

$$\mathcal{T}_{\mu}\mathcal{P}_{2}(\mathbb{R}^{d}) = \overline{\{\nabla\psi, \ \psi \in C_{c}^{\infty}(\mathbb{R}^{d})\}} \subset L^{2}(\mu),$$

where $L^2(\mu) = \{ f \in \mathbb{R}^d \to \mathbb{R}^d, \int \|f(x)\|_2^2 d\mu(x) < \infty \}.$

$$T_{\mu}\mathcal{P}_2(\mathbb{R}^d)\subset L^2(\mu)$$
 . μ

 $\mathcal{P}_2(\mathbb{R}^d)$

Riemannian Structure of the Wasserstein Space

• Geodesics between $\mu \ll \text{Leb}$ and $\nu \in \mathcal{P}_2(\mathbb{R}^d)$:

$$\forall t \in [0,1], \ \mu_t = \left((1-t) \mathrm{Id} + t \mathrm{T}^{\nu}_{\mu} \right)_{\#} \mu$$

• Tangent space at $\mu \in \mathcal{P}_2(\mathbb{R}^d)$ (Ambrosio et al., 2005):

$$\mathcal{T}_{\mu}\mathcal{P}_{2}(\mathbb{R}^{d}) = \overline{\{\nabla\psi, \ \psi \in C_{c}^{\infty}(\mathbb{R}^{d})\}} \subset L^{2}(\mu),$$

where $L^2(\mu) = \{f \in \mathbb{R}^d \to \mathbb{R}^d, \ \int \|f(x)\|_2^2 \ \mathrm{d}\mu(x) < \infty\}.$

 $\mathcal{P}_2(\mathbb{R}^d)$

• \mathcal{F} is α -geodesically convex if $t \mapsto \mathcal{F}(\mu_t)$ is α -convex, *i.e.* for all $t \in [0, 1]$,

$$\mathcal{F}(\mu_t) \le (1-t)\mathcal{F}(\mu_0) + t\mathcal{F}(\mu_1) - \frac{\alpha t(1-t)}{2} \mathbf{W}_2^2(\mu_0, \mu_1).$$

Wasserstein Gradient

Definition (Wasserstein gradient (Bonnet, 2019))

Let $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. $\nabla_{W_2}\mathcal{F}(\mu) \in L^2(\mu)$ is a Wasserstein gradient of \mathcal{F} at μ if for any $\nu \in \mathcal{P}_2(\mathbb{R}^d)$ and any optimal coupling $\gamma \in \prod_o(\mu, \nu)$,

$$\mathcal{F}(\nu) = \mathcal{F}(\mu) + \int \langle \nabla_{W_2} \mathcal{F}(\mu)(x), y - x \rangle \, \mathrm{d}\gamma(x, y) + o\big(W_2(\mu, \nu)\big).$$

If such a gradient exists, then we say that \mathcal{F} is W_2 -differentiable at μ .

Properties:

- There is a unique gradient in $\mathcal{T}_{\mu}\mathcal{P}_2(\mathbb{R}^d)$ (Lanzetti et al., 2022, Proposition 2.5)
- Differential are strong (Lanzetti et al., 2022, Proposition 2.6), *i.e.* for any $\gamma \in \Pi(\mu, \nu)$,

$$\mathcal{F}(\nu) = \mathcal{F}(\mu) + \int \langle \nabla_{W_2} \mathcal{F}(\mu)(x), y - x \rangle \, \mathrm{d}\gamma(x, y) + o\left(\sqrt{\int \|x - y\|_2^2 \, \mathrm{d}\gamma(x, y)}\right).$$

In particular, for $\gamma = (Id, T)_{\#}\mu$,

 $\mathcal{F}(\mathbf{T}_{\#}\mu) = \mathcal{F}(\mu) + \langle \nabla_{\mathbf{W}_2} \mathcal{F}(\mu), \mathbf{T} - \mathrm{Id} \rangle_{L^2(\mu)} + o(\|\mathbf{T} - \mathrm{Id}\|_{L^2(\mu)})$

Wasserstein Gradient

Example of functionals

• Potential energies $\mathcal{V}(\mu) = \int V d\mu$: For V differentiable and smooth,

 $\nabla_{\mathbf{W}_2} \mathcal{V}(\mu) = \nabla V$

• Interaction energies $\mathcal{W}(\mu) = \iint W(x-y) d\mu(x)d\mu(y)$: For W even, differentiable and smooth,

 $\nabla_{\mathbf{W}_2} \mathcal{W}(\mu) = \nabla W \star \mu$

Negative entropy

 $\mathcal{H}(\mu) = \int \log (\mu(x)) d\mu(x)$ not W₂-differentiable but can consider subgradients under regularity assumptions:

$$\forall x \in \mathbb{R}^d, \ \nabla_{W_2} \mathcal{H}(\mu)(x) = \nabla \log \mu(x)$$

Wasserstein Gradient Flows (Ambrosio et al., 2005)

Wasserstein gradient flow of \mathcal{F} : curve $t \mapsto \mu_t$ satisfying (weakly)

$$\partial_t \mu_t = \operatorname{div}(\mu_t \nabla_{W_2} \mathcal{F}(\mu_t)).$$

Particles: $x_t \sim \mu_t \iff \frac{\mathrm{d}x_t}{\mathrm{d}t} = -\nabla_{\mathrm{W}_2} \mathcal{F}(\mu_t)(x_t).$

Wasserstein Gradient Flows (Ambrosio et al., 2005)

Wasserstein gradient flow of \mathcal{F} : curve $t \mapsto \mu_t$ satisfying (weakly)

$$\partial_t \mu_t = \operatorname{div}(\mu_t \nabla_{W_2} \mathcal{F}(\mu_t)).$$

Particles: $x_t \sim \mu_t \iff \frac{\mathrm{d}x_t}{\mathrm{d}t} = -\nabla_{\mathrm{W}_2} \mathcal{F}(\mu_t)(x_t).$

Time discretization of the flow:

• Implicit/Backward (JKO) scheme (Jordan et al., 1998):

$$\mu_{k+1} = \underset{\mu \in \mathcal{P}_2(\mathbb{R}^d)}{\operatorname{argmin}} \quad \frac{1}{2} W_2^2(\mu, \mu_k) + \tau \mathcal{F}(\mu)$$

If $\mu_k \ll \text{Leb}$, $\mu_{k+1} = T_{\#}\mu_k$ with

$$\mathbf{T} = \underset{\mathbf{T} \in L^{2}(\mu_{k})}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{T} - \operatorname{Id}\|_{L^{2}(\mu_{k})}^{2} + \tau \mathcal{F}(\mathbf{T}_{\#}\mu_{k})$$

Wasserstein Gradient Flows (Ambrosio et al., 2005) Wasserstein gradient flow of \mathcal{F} : curve $t \mapsto \mu_t$ satisfying (weakly)

$$\partial_t \mu_t = \operatorname{div}(\mu_t \nabla_{W_2} \mathcal{F}(\mu_t)).$$

Particles: $x_t \sim \mu_t \iff \frac{\mathrm{d}x_t}{\mathrm{d}t} = -\nabla_{\mathrm{W}_2} \mathcal{F}(\mu_t)(x_t).$

Time discretization of the flow:

• Implicit/Backward (JKO) scheme (Jordan et al., 1998):

$$\mu_{k+1} = \operatorname*{argmin}_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \frac{1}{2} W_2^2(\mu, \mu_k) + \tau \mathcal{F}(\mu)$$

If
$$\mu_k \ll \text{Leb}$$
, $\mu_{k+1} = T_{\#}\mu_k$ with

$$T = \underset{T \in L^2(\mu_k)}{\operatorname{argmin}} \frac{1}{2} \|T - \text{Id}\|_{L^2(\mu_k)}^2 + \tau \mathcal{F}(T_{\#}\mu_k)$$

• Explicit/Forward scheme

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^{2}(\mu_{k})} \ \frac{1}{2} \|\mathbf{T} - \operatorname{Id}\|_{L^{2}(\mu_{k})}^{2} + \tau \langle \nabla_{\mathbf{W}_{2}} \mathcal{F}(\mu_{k}), \mathbf{T} - \operatorname{Id} \rangle_{L^{2}(\mu_{k})} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_{k} \end{cases}$$

Taking the FOC: $T_{k+1} = Id - \tau \nabla_{W_2} \mathcal{F}(\mu_k)$

Wasserstein Gradient Descent

Wasserstein Gradient Descent:

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^{2}(\mu_{k})} \ \frac{1}{2} \|\mathbf{T} - \operatorname{Id}\|_{L^{2}(\mu_{k})}^{2} + \tau \langle \nabla_{\mathbf{W}_{2}} \mathcal{F}(\mu_{k}), \mathbf{T} - \operatorname{Id} \rangle_{L^{2}(\mu_{k})} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_{k} \end{cases}$$

Taking the FOC: $T_{k+1} = Id - \tau \nabla_{W_2} \mathcal{F}(\mu_k)$

Particle approximation: $\hat{\mu}_k^n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i^k}$, $x_i^{k+1} = T_{k+1}(x_i^k)$ for all $i \in \{1, \dots, n\}$.

11/24

Contributions

Study schemes of the form

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^2(\mu_k)} \ \mathbf{d}(\mathbf{T}, \mathrm{Id}) + \tau \langle \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k), \mathbf{T} - \mathrm{Id} \rangle_{L^2(\mu_k)} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_k, \end{cases}$$

and provide convergence conditions.

Considered divergences:

- For $d(T, Id) = \frac{1}{2} ||T Id||_{L^2(\mu)}^2$: Wasserstein gradient descent
- For d_{φµ}(T, Id) = φµ(T) − φµ(Id) − ⟨∇φµ(Id), T − Id⟩_{L²(µ)} (Bregman divergence on L²(µ)): extends Mirror Descent (Beck and Teboulle, 2003) to P₂(ℝ^d).
- For d(T, Id) = ∫ h(T(x) x) dµ(x): extends Preconditioned Gradient Descent (Maddison et al., 2021) to P₂(ℝ^d).

Table of Contents

Detour by \mathbb{R}^d

Wasserstein Gradient Flows

Mirror Descent

Preconditioned Gradient Descent

Applications

Background on $L^2(\mu)$

Definition (Bregman Divergence (Frigyik et al., 2008))

Let $\phi_\mu:L^2(\mu)\to\mathbb{R}$ be convex. The Bregman divergence is defined for all $T,S\in L^2(\mu)$ as

$$d_{\phi_{\mu}}(\mathbf{T}, \mathbf{S}) = \phi_{\mu}(\mathbf{T}) - \phi_{\mu}(\mathbf{S}) - \langle \nabla \phi_{\mu}(\mathbf{S}), \mathbf{T} - \mathbf{S} \rangle_{L^{2}(\mu)}$$

- If $\phi_{\mu}(T) = \frac{1}{2} \|T\|_{L^{2}(\mu)}^{2}$, $d_{\phi_{\mu}}(T, S) = \frac{1}{2} \|T S\|_{L^{2}(\mu)}^{2}$
- We call ϕ_{μ} pushforward compatible if there exists $\phi: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ such that

$$\forall \mu \in \mathcal{P}_2(\mathbb{R}^d), \ \forall \mathbf{T} \in L^2(\mu), \ \phi_\mu(\mathbf{T}) = \phi(\mathbf{T}_{\#}\mu).$$

In this case, if ϕ is W₂-differentiable, then ϕ_{μ} is Fréchet differentiable and $\nabla \phi_{\mu}(T) = \nabla_{W_2} \phi(T_{\#}\mu) \circ T.$

- Let $\phi_{\mu}, \psi_{\mu} : L^2(\mu) \to \mathbb{R}$ convex.
 - ϕ_{μ} is β -smooth relative to ψ_{μ} if for all $T, S \in L^{2}(\mu)$, $d_{\phi_{\mu}}(T, S) \leq \beta d_{\psi_{\mu}}(T, S)$.
 - $\circ \ \phi_{\mu} \text{ is } \alpha \text{-convex relative to } \psi_{\mu} \text{ if for all } T, S \in L^{2}(\mu), \ d_{\phi_{\mu}}(T,S) \geq \alpha d_{\psi_{\mu}}(T,S).$

Convexity on $\mathcal{P}_2(\mathbb{R}^d)$

Let $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$, $\mu_0 \ll \text{Leb}$, and $\mu_t = \left((1-t)\text{Id} + t\text{T}_{\mu_0}^{\mu_1}\right)_{\#}\mu_0$.

• \mathcal{F} is α -geodesically convex if $t \mapsto \mathcal{F}(\mu_t)$ is α -convex, *i.e.* for all $t \in [0, 1]$,

$$\mathcal{F}(\mu_t) \le (1-t)\mathcal{F}(\mu_0) + t\mathcal{F}(\mu_1) - \frac{\alpha t(1-t)}{2} W_2^2(\mu_0,\mu_1),$$

or equivalently

$$\frac{\alpha}{2} W_2^2(\mu_0, \mu_1) = \frac{\alpha}{2} \| T_{\mu_0}^{\mu_1} - \mathrm{Id} \|_{L^2(\mu_0)}^2 \le \mathcal{F}(\mu_1) - \mathcal{F}(\mu_0) - \langle \nabla_{W_2} \mathcal{F}(\mu_0), T_{\mu_0}^{\mu_1} - \mathrm{Id} \rangle_{L^2(\mu_0)} = \mathrm{d}_{\tilde{\mathcal{F}}_{\mu_0}}(T_{\mu_0}^{\mu_1}, \mathrm{Id})$$

with $\tilde{\mathcal{F}}_{\mu}(T) = \mathcal{F}(T_{\#}\mu).$

Convexity on $\mathcal{P}_2(\mathbb{R}^d)$

Let $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$, $\mu_0 \ll \text{Leb}$, and $\mu_t = ((1-t)\text{Id} + tT^{\mu_1}_{\mu_0})_{\#}\mu_0$.

• \mathcal{F} is α -geodesically convex if $t \mapsto \mathcal{F}(\mu_t)$ is α -convex, *i.e.* for all $t \in [0, 1]$,

$$\mathcal{F}(\mu_t) \le (1-t)\mathcal{F}(\mu_0) + t\mathcal{F}(\mu_1) - \frac{\alpha t(1-t)}{2} W_2^2(\mu_0,\mu_1),$$

or equivalently

$$\frac{\alpha}{2} W_2^2(\mu_0, \mu_1) = \frac{\alpha}{2} \| T_{\mu_0}^{\mu_1} - \mathrm{Id} \|_{L^2(\mu_0)}^2 \le \mathcal{F}(\mu_1) - \mathcal{F}(\mu_0) - \langle \nabla_{W_2} \mathcal{F}(\mu_0), T_{\mu_0}^{\mu_1} - \mathrm{Id} \rangle_{L^2(\mu_0)} = \mathrm{d}_{\tilde{\mathcal{F}}_{\mu_0}}(T_{\mu_0}^{\mu_1}, \mathrm{Id})$$

with $\tilde{\mathcal{F}}_{\mu}(T) = \mathcal{F}(T_{\#}\mu).$

Definition

Let
$$\mathcal{F}, \mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$$
, $\mu \in \mathcal{P}_2(\mathbb{R}^d)$, $T, S \in L^2(\mu)$, $\mu_t = (T_t)_{\#} \mu$ with $T_t = (1-t)S + tT$ for all $t \in [0, 1]$.

• $\mathcal{F} \ \beta$ -smooth relative to \mathcal{G} along $t \mapsto \mu_t$ if $\forall s, t \in [0, 1]$, $d_{\tilde{\mathcal{F}}_{\mu}}(T_s, T_t) \leq \beta d_{\tilde{\mathcal{G}}_{\mu}}(T_s, T_t)$.

• $\mathcal{F} \alpha$ -convex relative to \mathcal{G} along $t \mapsto \mu_t$ if $\forall s, t \in [0, 1]$, $d_{\tilde{\mathcal{F}}_{\mu}}(T_s, T_t) \ge \alpha d_{\tilde{\mathcal{G}}_{\mu}}(T_s, T_t)$.

Mirror Descent on the Wasserstein Space

Let $\phi_{\mu}: L^2(\mu) \to \mathbb{R}$ be strictly convex, proper and differentiable.

Mirror Descent scheme:

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^2(\mu_k)} \, \mathbf{d}_{\phi_{\mu_k}}(\mathbf{T}, \mathrm{Id}) + \tau \langle \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k), \mathbf{T} - \mathrm{Id} \rangle_{L^2(\mu_k)} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_k. \end{cases}$$

By FOC: $\nabla \phi_{\mu_k}(\mathbf{T}_{k+1}) = \nabla \phi_{\mu_k}(\mathrm{Id}) - \tau \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k)$

Computing the scheme:

• For
$$\phi_{\mu}(\mathbf{T}) = \int V \circ \mathbf{T} \, \mathrm{d}\mu$$
, $\mathbf{T}_{k+1} = \nabla V^* \circ \left(\nabla V - \tau \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k) \right)$

• For ϕ_{μ} pushforward compatible:

$$\nabla_{\mathbf{W}_2}\phi(\mu_{k+1})\circ\mathbf{T}_{k+1}=\nabla_{\mathbf{W}_2}\phi(\mu_k)-\tau\nabla_{\mathbf{W}_2}\mathcal{F}(\mu_k)$$

In general: implicit in $T_{k+1} \rightarrow Newton$ method

• Other particular cases with closed-forms, *e.g.* $\phi_{\mu}(T) = \frac{1}{2} ||P_{\mu}T||^2_{L^2(\mu)}$ recovers SVGD (Liu and Wang, 2016) or EKS (Garbuno-Inigo et al., 2020).

Descent Lemma

Let $\phi_{\mu}: L^2(\mu) \to \mathbb{R}$ be strictly convex, proper and differentiable.

Mirror Descent scheme:

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^2(\mu_k)} \ \mathbf{d}_{\phi_{\mu_k}}(\mathbf{T}, \mathrm{Id}) + \tau \langle \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k), \mathbf{T} - \mathrm{Id} \rangle_{L^2(\mu_k)} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_k. \end{cases}$$

Proposition (Descent Lemma)

Assumptions:

• For all $k \ge 0$, \mathcal{F} is β -smooth relative to ϕ along $t \mapsto ((1-t)\mathrm{Id} + t\mathrm{T}_{k+1})_{\#}\mu_k$ Then, for all $k \ge 0$,

$$\mathcal{F}(\mu_{k+1}) \leq \mathcal{F}(\mu_k) - \beta \mathrm{d}_{\phi_{\mu_k}}(\mathrm{Id}, \mathrm{T}_{k+1}).$$

Remark: β -smoothness implies $\beta d_{\phi_{\mu_k}}(T_{k+1}, Id) \ge d_{\tilde{\mathcal{F}}_{\mu_k}}(T_{k+1}, Id)$

Sketch of the proof:

- 1. Apply β -smoothness
- 2. Apply 3-point inequality

Convergence

Proposition

Assumptions: Let $\beta > 0, \alpha \ge 0$ and $T^{\mu_k,\mu^*}_{\phi_{\mu_k}} = \operatorname{argmin}_{T_{\#}\mu_k = \mu^*} d_{\phi_{\mu_k}}(T, Id).$

- $\mathcal{F} \ \beta$ -smooth relative to ϕ along $t \mapsto ((1-t)\mathrm{Id} + t\mathrm{T}_{k+1})_{\#}\mu_k$
- $\mathcal{F} \alpha$ -convex relative to ϕ along $t \mapsto \left((1-t) \mathrm{Id} + t \mathrm{T}_{\phi_{\mu_k}}^{\mu_k, \mu^*} \right)_{\#} \mu_k$

• Assume $d_{\phi_{\mu_k}}(T_{\phi_{\mu_k}}^{\mu_k,\mu^*}, T_{k+1}) \ge d_{\phi_{\mu_{k+1}}}(T_{\phi_{\mu_{k+1}}}^{\mu_{k+1},\mu^*}, Id)$ Then, for all $k \ge 1$, $\mathcal{F}(\mu_k) - \mathcal{F}(\mu^*) \le \frac{\beta - \alpha}{k} d_{\phi_{\mu_0}}(T_{\phi_{\mu_0}}^{\mu_0,\mu^*}, Id)$. If $\alpha > 0$, for all $k \ge 0$, $d_{\phi_{\mu_k}}(T_{\phi_{\mu_k}}^{\mu_k,\mu^*}, Id) \le \left(1 - \frac{\alpha}{\beta}\right)^k d_{\phi_{\mu_0}}(T_{\phi_{\mu_0}}^{\mu_0,\mu^*}, Id)$.

Let ϕ_{μ} be pushforward compatible. Define the OT problem:

$$W_{\phi}(\nu,\mu) = \inf_{\gamma \in \Pi(\nu,\mu)} \phi(\nu) - \phi(\mu) - \int \langle \nabla_{W_2} \phi(\mu)(y), x - y \rangle \, d\gamma(x,y)$$

$$\leq d_{\phi_{\eta}}(T,S) \quad \text{for} \quad (T,S)_{\#} \eta \in \Pi(\nu,\mu)$$

Property: If $\mu \ll \text{Leb}$ and $\nabla_{W_2}\phi(\mu)$ is invertible, then $\gamma^* = (T^{\mu,\nu}_{\phi_{\mu}}, \text{Id})_{\#}\mu$, and $W_{\phi}(\nu, \mu) = d_{\phi_{\mu}}(T^{\mu,\nu}_{\phi_{\mu}}, \text{Id}).$

Continuous Formulation

Informally, for ϕ_{μ} pushforward compatible:

$$\begin{cases} \varphi(\mu_k) = \nabla_{W_2} \phi(\mu_k) \\ \varphi(\mu_{k+1}) \circ T_{k+1} = \varphi(\mu_k) - \tau \nabla_{W_2} \mathcal{F}(\mu_k) & \xrightarrow{\tau \to 0} \end{cases} \begin{cases} \varphi(\mu_t) = \nabla_{W_2} \phi(\mu_t) \\ \frac{d}{dt} \varphi(\mu_t) = -\nabla_{W_2} \mathcal{F}(\mu_t). \end{cases}$$

Continuous Formulation

Informally, for ϕ_{μ} pushforward compatible:

$$\begin{cases} \varphi(\mu_k) = \nabla_{W_2} \phi(\mu_k) & \longrightarrow \\ \varphi(\mu_{k+1}) \circ T_{k+1} = \varphi(\mu_k) - \tau \nabla_{W_2} \mathcal{F}(\mu_k) & \xrightarrow{\tau \to 0} \end{cases} \begin{cases} \varphi(\mu_t) = \nabla_{W_2} \phi(\mu_t) \\ \frac{d}{dt} \varphi(\mu_t) = -\nabla_{W_2} \mathcal{F}(\mu_t). \\ & \frac{d}{dt} \varphi(\mu_t) = \frac{d}{dt} \nabla_{W_2} \phi(\mu_t) = H \phi_{\mu_t}(v_t), \\ & \text{with } H \phi_{\mu_t} : L^2(\mu_t) \to L^2(\mu_t) \text{ Hessian operator defined such that} \\ & \frac{d^2}{dt^2} \phi(\mu_t) = \langle H \phi_{\mu_t}(v_t), v_t \rangle_{L^2(\mu_t)} \quad \text{with} \quad \partial_t \mu_t + \operatorname{div}(\mu_t v_t) = 0. \end{cases}$$

Mirror flow:

$$\partial_t \mu_t - \operatorname{div} \left(\mu_t (\mathrm{H}\phi_{\mu_t})^{-1} \nabla_{\mathrm{W}_2} \mathcal{F}(\mu_t) \right) = 0.$$

Related works:

- For φ(μ) = ∫ Vdμ, F(μ) = KL(μ||μ*), coincides with continuous formulation of Mirror Langevin (Ahn and Chewi, 2021)
- For $\phi = \mathcal{F}$, coincides with Information Newton's flows (Wang and Li, 2020)
- For $\phi(\mu) = \frac{1}{2}W_2^2(\mu,\nu)$, $\mathcal{F}(\mu) = KL(\mu||\mu^*)$, coincides with Sinkhorn flows (Deb et al., 2023)

Table of Contents

Detour by \mathbb{R}^d

Wasserstein Gradient Flows

Mirror Descent

Preconditioned Gradient Descent

Applications

Preconditioned GD

Let $h: \mathbb{R}^d \rightarrow \mathbb{R}$ strictly convex, proper and differentiable.

Preconditioned Gradient Descent scheme: Let $\phi^h_\mu(T) = \int h \circ T \, d\mu$,

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^{2}(\mu_{k})} \ \phi_{\mu_{k}}^{h} \left(\frac{\operatorname{Id}-\mathbf{T}}{\tau}\right) \tau + \langle \nabla_{\mathbf{W}_{2}} \mathcal{F}(\mu_{k}), \mathbf{T} - \operatorname{Id} \rangle_{L^{2}(\mu_{k})} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_{k} \end{cases}$$

By FOC: $T_{k+1} = Id - \tau \nabla h^* \circ \nabla_{W_2} \mathcal{F}(\mu_k)$

Preconditioned GD

Let $h: \mathbb{R}^d \rightarrow \mathbb{R}$ strictly convex, proper and differentiable.

Preconditioned Gradient Descent scheme: Let $\phi^h_\mu(T) = \int h \circ T \, d\mu$,

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^{2}(\mu_{k})} \ \phi_{\mu_{k}}^{h} \left(\frac{\operatorname{Id}-\mathbf{T}}{\tau}\right) \tau + \langle \nabla_{\mathbf{W}_{2}} \mathcal{F}(\mu_{k}), \mathbf{T} - \operatorname{Id} \rangle_{L^{2}(\mu_{k})} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_{k} \end{cases}$$

By FOC: $T_{k+1} = Id - \tau \nabla h^* \circ \nabla_{W_2} \mathcal{F}(\mu_k)$

Proposition (Descent Lemma)

Assumptions: For all $k \ge 0$,

•
$$\mathcal{F}$$
 convex along $t \mapsto \left((1-t) \mathrm{T}_{k+1} + t \mathrm{Id} \right)_{\#} \mu_k$

• $d_{\phi_{\mu_k}^{h^*}} \left(\nabla_{W_2} \mathcal{F}(\mu_{k+1}) \circ T_{k+1}, \nabla_{W_2} \mathcal{F}(\mu_k) \right) \leq \beta d_{\tilde{\mathcal{F}}_{\mu_k}}(\mathrm{Id}, T_{k+1})$ Then, for all $k \geq 0$,

$$\phi_{\mu_{k+1}}^{h^*} \big(\nabla_{W_2} \mathcal{F}(\mu_{k+1}) \big) \le \phi_{\mu_k}^{h^*} \big(\nabla_{W_2} \mathcal{F}(\mu_k) \big) - \beta d_{\tilde{\mathcal{F}}_{\mu_k}} (T_{k+1}, \mathrm{Id}).$$

Assumptions: inequalities between $d_{\phi} \rightarrow$ sufficient conditions using convexity?

Preconditioned GD

Let $h : \mathbb{R}^d \to \mathbb{R}$ strictly convex, proper and differentiable.

Preconditioned Gradient Descent scheme: Let $\phi^h_{\mu}(T) = \int h \circ T \, d\mu$,

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^{2}(\mu_{k})} \phi_{\mu_{k}}^{h} \left(\frac{\operatorname{Id} - \mathbf{T}}{\tau}\right) \tau + \langle \nabla_{\mathbf{W}_{2}} \mathcal{F}(\mu_{k}), \mathbf{T} - \operatorname{Id} \rangle_{L^{2}(\mu_{k})} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_{k} \end{cases}$$

By FOC: $T_{k+1} = Id - \tau \nabla h^* \circ \nabla_{W_2} \mathcal{F}(\mu_k)$

Proposition

Assumptions: For all $k \ge 0$, denoting $\overline{T} = \operatorname{argmin}_{T,T_{\#}\mu_k = \mu^*} d_{\tilde{\mathcal{F}}_{\mu_k}}(Id, T)$,

•
$$\mathcal{F}$$
 convex along $t \mapsto \left((1-t) \mathrm{T}_{k+1} + t \mathrm{Id} \right)_{\#} \mu_k$

- $d_{\phi_{\mu_k}^{h^*}} \left(\nabla_{W_2} \mathcal{F}(\mu_{k+1}) \circ T_{k+1}, \nabla_{W_2} \mathcal{F}(\mu_k) \right) \leq \beta d_{\tilde{\mathcal{F}}_{\mu_k}} (\mathrm{Id}, T_{k+1})$
- $\alpha d_{\tilde{\mathcal{F}}_{\mu_k}}(\mathrm{Id}, \bar{\mathrm{T}}) \leq d_{\phi_{\mu_k}^{h^*}}(\nabla_{\mathrm{W}_2} \mathcal{F}(\bar{\mathrm{T}}_{\#}\mu_k) \circ \bar{\mathrm{T}}, \nabla_{\mathrm{W}_2} \mathcal{F}(\mu_k))$

Then, for all $k \ge 1$, $\phi_{\mu_k}^{h^*} (\nabla_{W_2} \mathcal{F}(\mu_k)) - h^*(0) \le \frac{\beta - \alpha}{k} (\mathcal{F}(\mu_0) - \mathcal{F}(\mu^*))$. Moreover, assuming that h^* attains its minimum at 0 and $\alpha > 0$, for all $k \ge 0$, $\mathcal{F}(\mu_k) - \mathcal{F}(\mu^*) \le (1 - \tau \alpha)^k (\mathcal{F}(\mu_0) - \mathcal{F}(\mu^*))$.

9/2

Table of Contents

Detour by \mathbb{R}^d

Wasserstein Gradient Flows

Mirror Descent

Preconditioned Gradient Descent

Applications

Showing Relative Smoothness and Convexity

Relative smoothness of $\mathcal{F}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ relative to $\phi: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$?

• Let
$$\mathcal{F}(\mu) = \int V d\mu$$
 and $\phi(\mu) = \int U d\mu$:

 $V \beta$ -smooth relative to $U \Longrightarrow \mathcal{F} \beta$ -smooth relative to ϕ $V \alpha$ -convex relative to $U \Longrightarrow \mathcal{F} \alpha$ -convex relative to ϕ

• Let $\mathcal{F}(\mu) = \iint W(x-y) \, d\mu(x) d\mu(y)$ and $\phi(\mu) = \iint K(x-y) \, d\mu(x) d\mu(y)$:

 $W \beta$ -smooth relative to $K \implies \mathcal{F} \beta$ -smooth relative to ϕ $W \alpha$ -convex relative to $K \implies \mathcal{F} \alpha$ -convex relative to ϕ

• For $\mathcal{F} = \mathcal{G} + \mathcal{H}$, $d_{\tilde{\mathcal{F}}_{\mu}} = d_{\tilde{\mathcal{G}}_{\mu}} + d_{\tilde{\mathcal{H}}_{\mu}}$ and \mathcal{F} 1-convex relative to \mathcal{G} and \mathcal{H} • In general: look at the Hessian

Mirror Descent on Interaction Energy Goal: Let $\Sigma \in S_d^{++}(\mathbb{R})$ possibly ill-conditioned,

$$\min_{\mu} \mathcal{W}(\mu) = \iint W(x-y) \, \mathrm{d}\mu(x) \mathrm{d}\mu(y) \quad \text{with} \quad W(z) = \frac{1}{4} \|z\|_{\Sigma^{-1}}^4 - \frac{1}{2} \|z\|_{\Sigma^{-1}}^2$$

Bregman potential: $\phi_{\mu}({\rm T}) = \iint K\bigl({\rm T}(x) - {\rm T}(y)\bigr) \; {\rm d}\mu(x) {\rm d}\mu(y)$ with

$$K_{2}(z) = \frac{1}{2} ||z||_{2}^{2}, \quad K_{2}^{\Sigma}(z) = \frac{1}{2} ||z||_{\Sigma^{-1}}^{2},$$

$$K_{4}(z) = \frac{1}{4} ||z||_{2}^{4} + \frac{1}{2} ||z||_{2}^{2}, \quad K_{4}^{\Sigma}(z) = \frac{1}{4} ||z||_{\Sigma^{-1}}^{4} + \frac{1}{2} ||z||_{\Sigma^{-1}}^{2}.$$

21/24

Mirror Descent on Gaussian

Goal:

$$\min_{\mu} \mathcal{F}(\mu) = \int V \mathrm{d}\mu + \mathcal{H}(\mu) \quad \text{with} \quad V(x) = \frac{1}{2} x^T \Sigma^{-1} x$$

 \rightarrow minimum $\mu^{\star} = \mathcal{N}(0, \Sigma).$

Comparison between:

- Forward-Backward (FB) on the Bures-Wasserstein space (Diao et al., 2023)
- Preconditioned Forward-Backward (PFB) scheme with $\phi(\mu) = \int V d\mu$
- NEM: MD with $\phi(\mu) = \mathcal{H}(\mu)$ and restriction to Gaussian

$$\mathrm{KL}(\boldsymbol{\mu}_t || \boldsymbol{\mu^\star})$$

Preconditioned GD on Single-Cells

Goal: $\min_{\mu} \mathcal{F}(\mu) = D(\mu, \nu)$ with μ_0 untreated cell and ν perturbed cell Use PGD with $h^*(x) = (\|x\|_2^a + 1)^{1/a} - 1$ with $a \in \{1.25, 1.5, 1.75\}$, which is well suited to minimize functions growing in $\|x - x^*\|^{a/(a-1)}$ near x^* .

- Rows: 2 profiling technologies
- Columns/subcolumns: Different objectives $\mathcal{F}/measure$ of convergence and number of iterations to converge
- Points: For treatment i, z_i = (x_i, y_i) with x_i value of F(μ̂) = D(μ̂, ν) (1st subcolumn) or number of iterations (2nd subcolumn) without preconditioning and y_i with preconditioning
- Colors: treatments
- \rightarrow Points below the diagonal: PGD provides a better minimum or converges faster

Conclusion

Conclusion:

- Mirror Descent on $\mathcal{P}_2(\mathbb{R}^d)$
- Preconditioned Gradient Descent on $\mathcal{P}_2(\mathbb{R}^d)$
- Convergence analysis of the discrete schemes
- Also in the paper: analysis of the Bregman Forward-Backward scheme

Perspectives:

- Better understand sufficient conditions of convergence for PGD
- Find more examples satisfying the conditions
- Analyze the Gaussian MD scheme

Conclusion

Conclusion:

- Mirror Descent on $\mathcal{P}_2(\mathbb{R}^d)$
- Preconditioned Gradient Descent on $\mathcal{P}_2(\mathbb{R}^d)$
- Convergence analysis of the discrete schemes
- Also in the paper: analysis of the Bregman Forward-Backward scheme

Perspectives:

- Better understand sufficient conditions of convergence for PGD
- Find more examples satisfying the conditions
- Analyze the Gaussian MD scheme

Thank you for your attention!

References I

Kwangjun Ahn and Sinho Chewi. Efficient Constrained Sampling via the Mirror-Langevin Algorithm. *Advances in Neural Information Processing Systems*, 34:28405–28418, 2021.

- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient Flows: in Metric Spaces and in the Space of Probability Measures.* Springer Science & Business Media, 2005.
- Francis Bach. Effortless optimization through gradient flows, 2020. URL https://francisbach.com/gradient-flows/.
- Amir Beck and Marc Teboulle. Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization. *Operations Research Letters*, 31 (3):167–175, 2003.
- Benoît Bonnet. A Pontryagin Maximum Principle in Wasserstein Spaces for Constrained Optimal Control Problems. *ESAIM: Control, Optimisation and Calculus of Variations*, 25:52, 2019.
- Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. *Advances in neural information processing systems*, 31, 2018.

References II

- Nabarun Deb, Young-Heon Kim, Soumik Pal, and Geoffrey Schiebinger. Wasserstein Mirror Gradient Flow as the Limit of the Sinkhorn Algorithm. arXiv preprint arXiv:2307.16421, 2023.
- Michael Ziyang Diao, Krishna Balasubramanian, Sinho Chewi, and Adil Salim. Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space. In *International Conference on Machine Learning*, pages 7960–7991. PMLR, 2023.
- Bela A Frigyik, Santosh Srivastava, and Maya R Gupta. Functional Bregman divergence. In 2008 IEEE International Symposium on Information Theory, pages 1681–1685. IEEE, 2008.
- Alfredo Garbuno-Inigo, Franca Hoffmann, Wuchen Li, and Andrew M Stuart. Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler. *SIAM Journal on Applied Dynamical Systems*, 19(1):412–441, 2020.
- Richard Jordan, David Kinderlehrer, and Felix Otto. The Variational Formulation of the Fokker–Planck Equation. *SIAM journal on mathematical analysis*, 29(1): 1–17, 1998.

References III

Jaeyeon Kim, Chanwoo Park, Asuman Ozdaglar, Jelena Diakonikolas, and Ernest K Ryu. Mirror Duality in Convex Optimization. *arXiv preprint arXiv:2311.17296*, 2023.

- Nicolas Lanzetti, Saverio Bolognani, and Florian Dörfler. First-Order Conditions for Optimization in the Wasserstein Space. *arXiv preprint arXiv:2209.12197*, 2022.
- Qiang Liu and Dilin Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm. *Advances in neural information processing systems*, 29, 2016.
- Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively Smooth Convex Optimization by First-Order Methods, and Applications. *SIAM Journal on Optimization*, 28(1):333–354, 2018.
- Chris J Maddison, Daniel Paulin, Yee Whye Teh, and Arnaud Doucet. Dual Space Preconditioning for Gradient Descent. *SIAM Journal on Optimization*, 31(1): 991–1016, 2021.
- Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layer neural networks. *Proceedings of the National Academy of Sciences*, 115(33):E7665–E7671, 2018.

References IV

- Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon, Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. *Cell*, 176(4):928–943, 2019.
- Yifei Wang and Wuchen Li. Information Newton's Flow: Second-Order Optimization Method in Probability Space. *arXiv preprint arXiv:2001.04341*, 2020.
- Andre Wibisono. Sampling as optimization in the space of measures: The langevin dynamics as a composite optimization problem. In *Conference on Learning Theory*, pages 2093–3027. PMLR, 2018.